Let $(R,+,\cdot)$ be a unitary ring such that $a^2\neq0$ for all non-zero $a\in R$, and let $H=\{b \in R\ \mid\ $$b^2=1\}.$ If the expression $ab-ba=bab-a$ holds true $\forall a \in R, b\in H$, then $(H,\cdot)$ forms a group.
Here's what I've got so far: Take any $a,b\in H$, hence $(ab-ba)^2=-(bab-a)^2$. Then $2(ab-ba)^2=0$, so that $2ab=2ba$.
From here I got stuck (I'm trying to prove $(ab)^2=1$). How do I proceed?