By designating intuitionistic predicate logic in the given context with "pure," Joan Moschovakis indicates that it does not include any additional non-logical axioms (arithmetic, set-theoretical etc.) and the vocabulary items accordingly needed (i.e., term-forming functions and individual constants; viz., individual variables are the only terms).
Thus, with respect to the axiomatisation owing mainly to Stephen Kleene (see his Introduction to Metamathematics), the pure definition of intuitionistic predicate (quantified) calculus, IQC consists of the inference rules R1-R3 and the axiom schemas Ax1-Ax12, and that of intuitionistic propositional calculus, IPC, consists only of propositional letters as atomic formulas, the inference rule R1 and the axiom schemas Ax1–Ax10:
Rules of Inference
R1. Modus Ponens: From $A$ and $A\rightarrow B$, conclude $B$.
R2. Universal Generalisation: From $C\rightarrow A(x)$, where $x$ does not occur free in $C$, conclude $C \rightarrow\forall xA(x)$.
R3. Existential Introduction: From $A(t)\rightarrow C$, where $x$ does not occur free in $C$, conclude $\exists xA(x)\rightarrow C$.
Logical Axiom Schemas
Ax1. $A\rightarrow (B\rightarrow A)$
Ax2. $(A\rightarrow B)\rightarrow((A\rightarrow(B\rightarrow C))\rightarrow (A\rightarrow C))$
Ax3. $A\rightarrow(B\rightarrow A\wedge B)$
Ax4. $A\wedge B\rightarrow A$
Ax5. $A\wedge B\rightarrow B$
Ax6. $A\rightarrow A\vee B$
Ax7. $B\rightarrow A\vee B$
Ax8. $(A\rightarrow C)\rightarrow((B\rightarrow C)\rightarrow(A\vee B\rightarrow C))$
Ax9. $(A\rightarrow B)\rightarrow((A\rightarrow\neg B)\rightarrow\neg A)$
Ax10. $\neg A\rightarrow(A\rightarrow B)$
Ax11. $\forall xA(x)\rightarrow A(t)$
Ax12. $A(t)\rightarrow\exists xA(x)$
Hence, the following, where $0$ is an individual constant, $'$ is a unary function symbol, $+$ and $\cdot$ are binary function symbols, all of which are familiar to us from Peano Arithmetic, are left out:
Induction Schema
Ax13. $A(0)\land\forall x(A(x)\rightarrow A(x'))\rightarrow\forall xA(x)$
Arithmetic Axioms
Ax14. $(a'=b')\rightarrow(a=b)$
Ax15. $\neg(a'=0)$
Ax16. $(a= b)\rightarrow((a=c)\rightarrow(b=c))$
Ax17. $(a=b)\rightarrow(a'=b')$
Ax18. $(a+0)=a$
Ax19. $(a+b')=(a+b)'$
Ax20. $(a\cdot 0)=0$
Ax21. $(a\cdot b')=(a\cdot b)+a$