Take any partion $\Pi = \{a = t_0 \leq \ldots \leq t_n = b\}$. Then
\begin{align*}
V_a^b(F, \Pi) = \sum_{i=1}^n|F(t_i) - F(t_{i-1})| &= \sum_{i=1}^n\Big|\int_{t_{i-1}}^{t_i}f(y)dy \Big| \\
&\overset{*}{\leq} \sum_{i=1}^n\int_{t_{i-1}}^{t_i}|f(y)|dy \\
&= \int_a^b|f(y)|dy \\
&= ||f||_{L^1([a,b])},
\end{align*}
where we used Jensen's inequality at the $*$-step.
Hence, $V_a^b(F) \leq ||f||_{L^1([a,b])}$. For the lower bound, you can use the fundamental theorem of calculus for Lebesgue integrals. That is, $F$ is differentiable on a set $N$ of Lebesgue measure $1$, and for $x \in N$, $F'(x) = f(x)$. For simplicity, we will assume $F$ to be everywhere differentiable, and $f$ to be Riemann integrable. (You fill in the rest of the details.) Now, take any sequence of partitions $\Pi^n = \{a=t_0^n \leq \ldots \leq t_{k_n}^n = b\}$ such that $\max_{1\leq i \leq k_n^n} |t_{i}^n-t_{i-1}^n| \to 0$ as $n \to \infty$. Then,
\begin{align*}
V_a^b(F, \Pi^n) = \sum_{i=1}^{k_n}|F(t_i^n) - F(t_{i-1}^n)| &= \sum_{i=1}^{k_n}\frac{|F(t_i^n) - F(t_{i-1}^n)|}{(t_i^n-t_{i-1}^n)}(t_i^n-t_{i-1}^n)\\
&= \sum_{i=1}^{k_n}|f(c_i^n)|(t_{i}^n - t_{i-1}^n) \\
&\to \int_a^b|f(y)|dy \\
&= ||f||_{L^1([a,b])}.
\end{align*}
as $n \to \infty$. Here, the values $c_i^n$ are determined by the mean value theorem. So indeed, $V_a^b(F) = ||f||_{L^1([a,b])}$.