Let $a_{n}=$ the first $p_{n}$th digits to the right of decimal point of the square root of the $n$th prime.
Example:
$\sqrt{2}=1.414213562...$
So, $a_{1}=41$
$\sqrt{3}=1.73205080...$
So, $a_{2}=732$
$\sqrt{5}=2.236067977499789696409173668731276...$
So, $a_{3}=23606$
$\sqrt{7}=2.64575131106459059050161575363926...$
So, $a_{4}=6457513$
$\sqrt{11}=3.316624790355399849114932736...$
So, $a_{5}=31662479035$
.
.
.
The number I want to construct:
$0.a_{1}a_{2}a_{3}a_{4}a_{5}...=0.4173223606645751331662479035...$
This number exists by monotone bounded sequence theorem applied to the sequence of partial sums of the series forming the number.
Could I say that this constant is transcendental?
Update at $12$:$21$AM of May/$31$/$2024$:
I have added the following summation formula for the number:
$0.a_{1}a_{2}a_{3}a_{4}a_{5}...=\sum_{n=1}^{\infty} a_{n}10^{- \sum_{j=1}^{n} p^{j}}=\sum_{n=1}^{\infty} \lfloor10^{p_{n}}(\sqrt{p_{n}}-\lfloor \sqrt{p_{n}} \rfloor) \rfloor 10^{- \sum_{j=1}^{n} p^{j}} $