This question arises in a problem I'm working on in climate economics. Let $X\left( s \right) % MathType!MTEF!2!1!+- % feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x % e9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKk % Fr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam % iwamaabmaabaGaam4CaaGaayjkaiaawMcaaaaa!3B70! $ be a real variable. How does one differentiate $\int\limits_0^t {X\left( s \right) ds} % MathType!MTEF!2!1!+- % feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x % e9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKk % Fr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8 % qCaeaacaWGybWaaeWaaeaacaWGZbaacaGLOaGaayzkaaacciGae8hi % aaIaamizaiaadohaaSqaaiaaicdaaeaacaWG0baaniabgUIiYdaaaa!423E! $ with respect to $X\left( t \right) % MathType!MTEF!2!1!+- % feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x % e9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKk % Fr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam % iwamaabmaabaGaamiDaaGaayjkaiaawMcaaaaa!3B71! $ , the value of $X\left( \bullet \right) % MathType!MTEF!2!1!+- % feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x % e9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKk % Fr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam % iwamaabmaabaGaeyOiGClacaGLOaGaayzkaaaaaa!3BFD! $ at the upper limit? I posed this to ChatGPT and it used the Dirac delta function to conclude that the answer is 1. However, I've found it sometimes makes math mistakes, and in any case I didn't understand its logic.
Any advice will be appreciated.