3

Let's consider the function \begin{align} \frac{\eta ^m\left( q \right)}{\eta \left( q^m \right)} \end{align} here η is the Dedekind eta function $ \eta \left( q \right) =q^{\frac{1}{24}}\prod_{n=1}^{\infty}{\left( 1-q^n \right)} $,m is a positive integer.
Some special results: \begin{align} \frac{\eta ^2\left( q \right)}{\eta \left( q^2 \right)}=\vartheta _4\left( q \right) \end{align} here $\vartheta _4\left( q \right)$ is the jacobi theta function \begin{align} \frac{\eta ^3\left( q \right)}{\eta \left( q^3 \right)}=\frac{3}{2}a\left( q^3 \right) -\frac{1}{2}a\left( q \right) \end{align} here $a\left( q \right)$ is the Borweins' cubic theta function \begin{align} a\left( q \right) =1+6\sum_{n=0}^{\infty}{\left\{ \frac{q^{3n+1}}{1-q^{3n+1}}-\frac{q^{3n+2}}{1-q^{3n+2}} \right\}} \end{align} and \begin{align} \frac{\eta ^5\left( q \right)}{\eta \left( q^5 \right)}=1-5\sum_{n=1}^{\infty}{\left( \frac{n}{5} \right) \frac{nq^n}{1-q^n}} \end{align} here $\left( \frac{n}{5} \right) $ denote the Legendre symbol.
Question:Are these kinds of identities universal? Is there a general way to get it?

Loyar
  • 89

0 Answers0