I don't offhand know how to use your equation involving $\sin$. Instead, we have
$$\begin{equation}\begin{aligned}
& \cosec(10^\circ) + \cosec(50^\circ) - \cosec(70^\circ) \\
& = \frac{1}{\sin(10^\circ)} + \frac{1}{\sin(50^\circ)} - \frac{1}{\sin(70^\circ)} \\
& = \frac{\sin(70^\circ)\sin(50^\circ) + \sin(70^\circ)\sin(10^\circ) - \sin(50^\circ)\sin(10^\circ)}{\sin(10^\circ)\sin(50^\circ)\sin(70^\circ)}
\end{aligned}\end{equation}\tag{1}\label{eq1A}$$
As shown in multiple answers in Find the numerical value of $\sin 10^\circ \sin 50^\circ \sin 70^\circ$. (e.g., this one), with the denominator, we get
$$\sin(10^\circ)\sin(50^\circ)\sin(70^\circ) = \frac{1}{8} \tag{2}\label{eq2A}$$
The Product-to-sum identities section of Wikipedia's "List of Trigonometric Identities" article has
$$\sin \theta \,\sin \varphi ={\cos(\theta -\varphi )-\cos(\theta +\varphi ) \over 2} \tag{3}\label{eq3A}$$
Thus, the numerator of \eqref{eq1A} becomes
$$\begin{equation}\begin{aligned}
& \frac{(\cos(20^{\circ}) - \cos(120^{\circ})) + (\cos(60^{\circ}) - \cos(80^{\circ})) - (\cos(40^{\circ}) - \cos(60^{\circ}))}{2} \\
& = \frac{(\cos(20^{\circ}) + \frac{1}{2}) + (\frac{1}{2} - \cos(80^{\circ})) - (\cos(40^{\circ}) - \frac{1}{2})}{2} \\
& = \frac{\frac{3}{2} + \cos(20^{\circ}) - \cos(80^{\circ}) - \cos(40^{\circ})}{2}
\end{aligned}\end{equation}\tag{4}\label{eq4A}$$
From this Math SE answer, using the expansion of $\cos(80^{\circ}) = \cos(60^{\circ} + 20^{\circ})$ and $\cos(40^{\circ}) = \cos(60^{\circ} - 20^{\circ})$, we get $\cos(20^\circ) = \cos(80^\circ) + \cos(40^\circ) \;\to\; \cos(20^\circ) - \cos(80^\circ) - \cos(40^\circ) = 0$. Thus, \eqref{eq4A} simplifies to $\frac{3}{4}$. Using this and \eqref{eq2A} in \eqref{eq1A}, we end up with
$$\cosec(10^\circ) + \cosec(50^\circ) - \cosec(70^\circ) = \frac{\frac{3}{4}}{\frac{1}{8}} = 6 \tag{5}\label{eq5A}$$