I am trying to solve an integral of the form \begin{equation} \int_{-\infty}^\infty \frac{e^{-(A\omega+iB)^2+C}}{\omega^2} d\omega, \end{equation} where $A,B,C\in \mathbb{R}$, $A>0$.
Attempt 1: Contour integral with a dented path
On $S_\varepsilon=\left\{\varepsilon e^{i \theta}: \pi \leq \theta \leq 2 \pi\right\}$, \begin{equation} \begin{aligned} \int_{S_\varepsilon} \frac{e^{-(Az+iB)^2+C}}{z^2} dz &= e^{B^2+C}\int_\pi^{2\pi} \frac{e^{-A^2z^2-2iABz}}{z^2}dz \\ &= e^{B^2+C}\int_{S_\varepsilon} \frac{1}{z^2} \sum_{n=0}^\infty \frac{(-A^2z^2-2iABz)^n}{n!} dz \\ &= e^{B^2+C}\int_{S_\varepsilon} \frac{1}{z^2} \left( 1-A^2 z^2 - 2iABz + \frac{A^4z^4}{2} + \frac{4iA^3 B z^3}{2} - \frac{4 A^2 B^2 z^2}{2} + \cdots \right) dz \\ &= e^{B^2+C}\int_\pi^{2 \pi} \frac{i \varepsilon e^{i \theta}}{\varepsilon^2 e^{2 i \theta}}\left( 1-A^2 \varepsilon^2 e^{2 i \theta} - 2i AB \varepsilon e^{i \theta} + \frac{A^4 \varepsilon^4 e^{4 i \theta}}{2} + \cdots \right) d\theta \\ &= e^{B^2+C}\int_\pi^{2 \pi} \frac{i}{\varepsilon e^{i \theta}} + 2 AB + o(\varepsilon) d\theta \\ &= e^{B^2+C} \left( -\frac{2}{\varepsilon} + 2 \pi A B + \pi o(\varepsilon) \right) \quad \text{divergent as } \varepsilon \rightarrow 0 \end{aligned} \end{equation}
Attempt 2: By Cauchy's integral formula for $n=1$ and $C=\{Re^{i\theta}: 0 \leq \theta \leq 2\pi\}$, \begin{equation} \int_C \frac{f(\omega)}{\omega^2} d \omega = 2 \pi i f^{\prime}(0). \end{equation} Since $e^{i (\theta - \pi)}=-e^{i \theta}$, \begin{equation} \begin{aligned} \int_C \frac{e^{-(Az+iB)^2+C}}{z^2} dz &= \int_0^\pi \frac{e^{-(A \varepsilon e^{i \theta}+iB)^2+C}}{\varepsilon e^{i \theta}} d\theta + \int_\pi^{2 \pi} \frac{e^{-(A \varepsilon e^{i \theta}+iB)^2+C}}{\varepsilon e^{i \theta}} d\theta \\ &= - \int_{\pi}^{2 \pi} \frac{e^{-(A \varepsilon e^{i \theta}-iB)^2+C}}{\varepsilon e^{i \theta}} d\theta + \int_\pi^{2 \pi} \frac{e^{-(A \varepsilon e^{i \theta}+iB)^2+C}}{\varepsilon e^{i \theta}} d\theta \\ &= \cdots \\ &= 2 \pi i (-2 i AB) e^{B^2+C} \\ &= 4 \pi AB e^{B^2+C} \end{aligned} \end{equation}
I cannot seem to find any relation between the two integrals.
Attempt 3: Convolution Theorem \begin{equation} \mathfrak{F}\left\{ (f*g)(x) \right\} = \hat{f}(\omega) \hat{g}(\omega). \end{equation} Let $\hat{f}(\omega)=\frac{C}{\omega^2}$ for some constant $C$, then $\mathfrak{F}^{-1}\{\hat{f}(\omega)\}= |x|^2$. I believe the convolution theorem only applies when $f$ and $g$ are integrable. However, $|x|^2 \notin L_1$.
Is there anything that I am missing? Or is there any other way to solve this type of integrals? Any help would be appreciated!