3

I have here an equation. $$ h'(t_2) \delta(t_1 - t_2) = [h(t_2) - h(t_1)] \delta'(t_1 - t_2) $$

I checked the equality by integrating both sides with a test function. $$ \int d t_1 \phi(t_1) \ldots \to h'(t_2) \phi(t_2) \\ \int d t_2 \phi(t_2) \ldots \to h'(t_1) \phi(t_1) $$

Is this equation mathematically correct? I see a very similar derivation in this answer. If correct, can this kind of equation be derived using some sort of product rule? Checking using test functions may not be very practical for more complicated expressions. E.g. $$ h'(t_1) \delta(t_1 - t_3) = \int d t_2 h(t_2) [\delta'(t_1 - t_2) \delta(t_2 - t_3) - \delta(t_1 - t_2) \delta'(t_2 - t_3)] $$

RobPratt
  • 50,938
Bio
  • 1,198

2 Answers2

1

For $\phi\in C_C^\infty$ and $h\in C^\infty$, we have

$$\begin{align} \langle h'_{t_2}\delta_{t_2},\phi \rangle&=\langle \delta_{t_2},h'_{t_2}\phi \rangle\\\\ &=h'(t_2)\phi(t_2)\tag1 \end{align}$$

and

$$\begin{align} \langle h_{t_2}\delta'_{t_2},\phi \rangle&=\langle \delta'_{t_2},h_{t_2}\phi \rangle\\\\ &=-h(t_2)\phi'(t_2)\tag2 \end{align}$$

and

$$\begin{align} \langle h\delta'_{t_2},\phi \rangle&=\langle \delta'_{t_2},h\phi \rangle\\\\ &=-h'(t_2)\phi(t_2)-h(t_2)\phi'(t_2)\tag3 \end{align}$$

Subtracting $(3)$ from $(2)$ yields $(1)$. And we are done!

Mark Viola
  • 184,670
  • Thanks. Do we also need to check with test functions of the $t_1$ variable? Or that is not necessary? – Bio May 22 '24 at 03:53
  • You're welcome. My pleasure. And that is not necessary, but would be a nice exercise for practice. – Mark Viola May 22 '24 at 13:46
0

Start with $h(t_1) \delta(t_1 - t_2) = h(t_2) \delta(t_1 - t_2)$. Differentiate both sides w.r.t. $t_1$ using the product rule $$ h'(t_1) \delta(t_1-t_2) + h(t_1) \delta'(t_1 -t_2) = h(t_2) \delta'(t_1-t_2) $$

Bio
  • 1,198