Solve the equation $$x^2 \equiv 1729 \mod{7957}. \ \ \ \ (1)$$ What I've tried:
$7957 = 109 \cdot 73$, so $(i) \iff \begin{cases}x^2 \equiv 94 \mod{109} \\ x^2 \equiv 50 \mod 73\end{cases}$. But I don't know how to continue
Solve the equation $$x^2 \equiv 1729 \mod{7957}. \ \ \ \ (1)$$ What I've tried:
$7957 = 109 \cdot 73$, so $(i) \iff \begin{cases}x^2 \equiv 94 \mod{109} \\ x^2 \equiv 50 \mod 73\end{cases}$. But I don't know how to continue