Let $a,b,$ be real numbers such that $a\ge 4b$ . Find the minimum of $(a-b)^2+(a-1)^2+(b-1)^2$.
This problem is http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=553680
Let $a,b,$ be real numbers such that $a\ge 4b$ . Find the minimum of $(a-b)^2+(a-1)^2+(b-1)^2$.
This problem is http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=553680
The minimum is either on the interior of the feasible set, or on the boundary.
The gradient of the objective is $$\left[2(a-b)+2(a-1), -2(a-b)+2(b-1)\right] = \left[4a-2b-2, 4b-2a-2\right],$$ and so the unconstrained minimum is the infeasible point $(1,1)$. Therefore the minimum is on the boundary. Substituting $a=4b$ gives $$\min_b\ (3b)^2 + (4b-1)^2 + (b-1)^2 = \min_b\ 26b^2-10b+2.$$ The gradient is $52b-10$, so $b=\frac{5}{26}$ and the minimum is $\frac{27}{26}$.
Hint: Let $a=4b+c^2$. You can minimize the resulting function of $b$ and $c$, without worrying about a boundary.
Set $a = 4b + c\ $ and then minimize the function $f(b,c) = (4b +c -b)^2 + (4b+c-1)^2 + (b-1)^2$ using the standard derivative test. The function will be at a minimum on the half-plane where it is defined either a local minimum, or along the boundary, which is where $c=0$.
Remarks: Here is a solution without calculus. Similar trick is used in e.g. this.
We have the following identity \begin{align*} &(a - b)^2 + (a - 1)^2 + (b - 1)^2\\ ={}& \frac{27}{26} + \frac{9}{13}(a - 4b) + 2\left(a - \frac{b}{2} - \frac{35}{52}\right)^2 + \frac{3}{2}\left(b - \frac{5}{26}\right)^2. \end{align*}
Thus, we have $(a - b)^2 + (a - 1)^2 + (b - 1)^2 \ge \frac{27}{26}$ for all real numbers $a\ge 4b$.
Also, when $a = 10/13, b = 5/26$, we have $(a - b)^2 + (a - 1)^2 + (b - 1)^2 = 27/26$.
Thus, the minimum of $(a - b)^2 + (a - 1)^2 + (b - 1)^2$ subject to $a \ge 4b$ is $\frac{27}{26}$ when $b = \frac{5}{26}$ and $a = \frac{10}{13}$ (satisfying $a = 4b$).
$\phantom{2}$
Remarks: How to obtain this identity?
We use the method of unknown coefficients.
We hope to find constants $M$ and $\alpha \ge 0$ such that $$f(a, b) := (a - b)^2 + (a - 1)^2 + (b - 1)^2 - M - \lambda (a - 4b) $$ is non-negative for all $a, b \in \mathbb{R}$. If so, we have $(a-b)^2+(a-1)^2 + (b-1)^2 \ge M$ for reals $a\ge 4b$. Furthermore, when $a = 4b$, we have $(a-b)^2+(a-1)^2 + (b-1)^2 \ge M$.
We complete the square in two variables ($a$ and $b$), one at a time. We have $$f(a, b) = 2\left(a - \frac{\lambda}{4} - \frac{b}{2} - \frac12\right)^2 + \frac32\left(b - 1 + \frac76\lambda\right)^2 - M - \frac{13}{6}\lambda^2 + 3\lambda.$$
Solving the system of \begin{align*} a - \frac{\lambda}{4} - \frac{b}{2} - \frac12 &= 0, \\ b - 1 + \frac76\lambda &= 0, \\ - M - \frac{13}{6}\lambda^2 + 3\lambda &= 0,\\ a - 4b &= 0. \end{align*} we have $\lambda = \frac{9}{13}$ and $M = \frac{27}{26}$.