The order of the element $\sigma = \begin{pmatrix} 1 &2 &3 &4 &5 \\ \downarrow &\downarrow &\downarrow &\downarrow &\downarrow \\ 4 &5 &1 &3 &2 \end{pmatrix}$ of the symmetric group $S_5$ is
$\text{(A)}\space 2$ $\space\space\space\space\space\space\space\space\space\space$ $\text{(B)}\space 3$ $\space\space\space\space\space\space\space\space\space\space$ $\text{(C)}\space 6$ $\space\space\space\space\space\space\space\space\space\space$ $\text{(D)}\space 8$ $\space\space\space\space\space\space\space\space\space\space$ $\text{(E)}\space 12$
My ATTEMPT: Regardless of the notation I use:
$$\sigma = \begin{pmatrix} 1 &2 &3 &4 &5 \\ \downarrow &\downarrow &\downarrow &\downarrow &\downarrow \\ 4 &5 &1 &3 &2 \\ \downarrow &\downarrow &\downarrow &\downarrow &\downarrow \\ 3 &2 &4 &1 &5 \\ \downarrow &\downarrow &\downarrow &\downarrow &\downarrow \\ 1 &5 &3 &4 &2 \\ \downarrow &\downarrow &\downarrow &\downarrow &\downarrow \\ 4 &2 &1 &3 &5 \\ \downarrow &\downarrow &\downarrow &\downarrow &\downarrow \\ 3 &5 &4 &1 &2 \\ \downarrow &\downarrow &\downarrow &\downarrow &\downarrow \\ 1 &2 &3 &4 &5 \\ \end{pmatrix}$$
So we required $6$ steps to reach to the identity $\begin{pmatrix} 1 &2 &3 &4 &5 \end{pmatrix}$.
Hence $\text{(C)}$ is the correct option.
In fact, the given answer is also $\text{(C)}$. However:
$(1)$ Is it allowed to use that notation? I never saw it before, but I saw something like
$\begin{pmatrix} a &b &c\\ \end{pmatrix}\begin{pmatrix} d &e\\ \end{pmatrix}\begin{pmatrix} f &g\\ \end{pmatrix}$, but I do not know how to convert it to be as such.
$(2)$ Getting $\text{(C)}$ does not mean my approach is right, I am not sure. Is it right?
$(3)$ Is there a quicker way to find the order?