If you are familiar with the q-Pchhammer symbols
$$P_n=\prod_{k=1}^{n} (1-2^{k-1-n})=\frac{2^{n+1}}{2^{n+1}-1}\,\,\left(2^{-(n+1)};2\right){}_{n+1}$$
The numerator form sequence $A005329$ in $OEIS$ (with a shift of $1$ and the denominator is $ 2^{\frac{ n (n+1)}{2}}$.
This meeans that
$$P_n=2^{\frac{- n (n+1)}{2}}\,\prod_{k=1}^{n} (2^k-1)=\prod_{k=1}^{n}\left(1-2^{-k}\right)=\left(\frac{1}{2};\frac{1}{2}\right)_n$$
For the convergence
$$\frac{P_{n+1}}{P_n}=1-2^{-(n+1)}$$
I did not find a simple asymptotic of $P_n$ without special functions, but it converges very fast
$$\left(
\begin{array}{cc}
n & P_n \\
10 & 0.2890702984197489333606512 \\
20 & 0.2887883704965666901812882 \\
30 & 0.2887880953555572936802431 \\
40 & 0.2887880950868650725213162 \\
50 & 0.2887880950866026777742536 \\
60 & 0.2887880950866024215293835 \\
70 & 0.2887880950866024212791443 \\
80 & 0.2887880950866024212789000 \\
90 & 0.2887880950866024212788997 \\
100 & 0.2887880950866024212788997 \\
\end{array}
\right)$$
and
$$\left(\frac{1}{2};\frac{1}{2}\right)_{\infty }=0.2887880950866024212788997$$
The number $0.288788\cdots$ is not recognized by the $ISC$ which however proposed, as an upper bound,
$$\log(\sqrt 3)\,\, \sqrt{\frac{5-\sqrt{5}}{10}} $$ which is an absolute error of $7.649\times 10^{-7}$
Edit
If we take logarithms, since
$$\int \log(1-2^{-k})\,dk=\frac{\text{Li}_2\left(2^{-k}\right)}{\log (2)}$$ we could think about Euler-MacLaurin summation. Using its simplest form
$$\log(P_n)= \frac{1}{2} \log \left(1-2^{-n}\right)+\frac{1+2^{-(n+2)}}{2^n\,\log (2)}+$$ $$\log(2)\,\sum_{m=1}^7 \frac {A_m}{2^{m n}\,(1-2^{-n})^m}+C$$
Using $L=\log(2)$, the coefficients are
$$\left(
\begin{array}{cc}
m & A_m \\
1 & \frac{-L^6+40 L^4-1680 L^2+100800}{1209600} \\
2 & -\frac{21 L^6-200 L^4+1680L^2}{403200} \\
3 & -\frac{301 L^6-1000 L^4+1680L^2}{604800} \\
4 & \frac{8 L^4-7 L^6}{4032} \\
5 & \frac{2 L^4-7 L^6}{2520} \\
6 & -\frac{L^6}{480} \\
7 & -\frac{L^6}{1680} \\
\end{array}
\right)$$
For this level of expansion
$$C=-\frac{-1561 L^8+1000 L^6-1680 L^4+16800 L^2+16800 \pi ^2}{201600 L}$$ and, for a infinite value of $n$, $P_\infty=e^C=0.2888769$.