summary: my original proof is below, though the argument boils down to
(1) $\det\big(\Omega Q +Q\Omega\big) \leq 0$
either because (a) $\big(\Omega Q +Q\Omega\big)= \big(\Omega + Q\Omega Q^T\big)Q$, a skew-symmetric matrix times an orientation reversing orthogonal matrix or (b) those familiar with examining degrees of maps on the sphere, i.e. $f, g: S^{2n-1}\longrightarrow S^{2n-1}$, routinely check $\frac{\tau \cdot f(x) + (1-\tau)\cdot g(x)}{\Vert \tau\cdot f(x) + (1-\tau)\cdot g(x)\Vert}$ shows the degree is constant so long as nothing in the numerator is mapped to zero when $\tau =\frac{1}{2}$-- this generated my original argument
(2) $\det\big(\Omega Q +Q\Omega\big) \geq 0$
since $\Omega\big(\Omega Q +Q\Omega\big)\Omega^{-1} = \big(\Omega Q +Q\Omega\big)$ and $\Omega^2 = -I$, ref Nonnegativity of the determinant of a commuting matrix
with $J= \begin{bmatrix} 0 &1 \\ -1 &0 \end{bmatrix}$
$\Omega = I_n \otimes J =\begin{bmatrix} J &\mathbf 0 &\dots &\mathbf 0\\\mathbf 0&J &\dots &\mathbf 0\\ \vdots & \vdots&\ddots&\vdots\\ \mathbf 0&\mathbf 0&\dots &J\end{bmatrix}$ and $Q \in O_{2n}(\mathbb R) -SO_{2n}(\mathbb R)$, to prove OP's claim it suffices to show $\det\big(\Omega Q + Q\Omega \big) = 0$
(i.) Lemma: $\det\big(\Omega Q + Q\Omega \big) \leq 0$
$U_\tau:= (1-\tau)\cdot \Omega Q + \tau \cdot Q\Omega$, for $\tau \in \big[0, \frac{1}{2}\big]$
$\det\big(U_0\big)= \det\big(\Omega\big)\cdot \det\big( Q\big)=-1$ and when $\tau \in \big(0, \frac{1}{2}\big)$, for any $\mathbf x \in \mathbb R^{2n} - \big\{\mathbf 0\big\}$
$\big\Vert U_\tau\mathbf x\big \Vert_2 \geq (1-\tau)\big \Vert \Omega Q\mathbf x \big \Vert_2 - \tau \big \Vert Q\Omega\mathbf x\big \Vert_2 = (1-\tau)\big \Vert \mathbf x \big \Vert_2 - \tau \big \Vert \mathbf x\big \Vert_2=(1-2\tau)\big \Vert \mathbf x \big \Vert_2\gt 0$
$\implies \det\big(U_\tau \big)\lt 0$ when $\tau \lt \frac{1}{2}$ by Intermediate Value Theorem
$\implies \det\big(\Omega Q + Q\Omega \big) = 2^{2n}\cdot \det\big(U_{\frac{1}{2}} \big)\leq 0$ by taking limits
(ii.) Lemma: $\ker\Big( \big(\Omega Q + Q\Omega -\lambda I\big)^{k}\Big)$ is $\Omega$-invariant
The conjugation map $T:M_{2n}(\mathbb R) \longrightarrow M_{2n}(\mathbb R)$ given by $T(X) = \Omega X \Omega^T$ is an involution with particularly nice fixed points
$T\big(\Omega Q + Q\Omega -\lambda I \big) = -1\cdot\Omega\big(\Omega Q + Q\Omega -\lambda I\big)\Omega = -1\cdot\Big(- Q\Omega - \Omega Q -(-\lambda I)\Big)= \big(\Omega Q + Q\Omega -\lambda I\big)$
$\implies T\Big(\big(\Omega Q + Q\Omega -\lambda I \big)^{k}\Big)=\Big(T\big(\Omega Q + Q\Omega -\lambda I \big)\Big)^k = \big(\Omega Q + Q\Omega -\lambda I \big)^{k}$
now if $\mathbf v \in \ker \Big( \big(\Omega Q + Q\Omega -\lambda I\big)^{k}\Big)$ then
$\big(\Omega Q + Q\Omega -\lambda I\big)^{k}\big(\Omega \mathbf v\big) = T\Big( \big(\Omega Q + Q\Omega -\lambda I\big)^{k}\Big)\big(\Omega \mathbf v\big) = \Omega\Big( \big(\Omega Q + Q\Omega -\lambda I\big)^{k}\Big)\mathbf v = \mathbf 0 $
$\implies \big(\Omega \mathbf v\big) \in \ker\Big( \big(\Omega Q + Q\Omega -\lambda I\big)^{k}\Big) $
Conclusion
If $\det\big(\Omega Q + Q\Omega \big) \lt 0$ then $\big(\Omega Q + Q\Omega \big)$ must have some negative eigenvalue $\lambda^*$ with algebraic multiplicity $r$ where $r$ is odd
$\implies \ker\Big( \big(\Omega Q + Q\Omega -\lambda^* I\big)^{r}\Big)$ is an odd ($r$-) dimensional $\Omega$-invariant subspace which is impossible (since $\Omega = -\Omega^T$ is invertible)
$\implies \det\big(\Omega Q + Q\Omega \big)=0$.