Given an ellipse $x^2 / a^2 + y^2 / b^2 = 1\;(a>b>0)$ on $xy$-plane.
Then an arbitrary elliptical cylinder through the ellipse has equation $(x / a + u z)^2 + (y / b + v z)^2 = 1$ for some $u,v\in\Bbb R$.
When does this equation represent a circular cylinder?
My attempt:
Expanding the left side of the equation: $x^2/a^2+2(u/a)xz+u^2z^2+y^2/b^2+2(v/b)yz+v^2z^2$.
the corresponding symmetric matrix is $$\left(\begin{array}{ccc} \frac{1}{a^2} & 0 & \frac{u}a \\ 0 & \frac{1}{b^2} & \frac{v}{b} \\ \frac{u}{a} & \frac{v}{b} & u^2+v^2 \end{array}\right)$$ The eigenvalues are (WA computation) \begin{align} \lambda_1= & 0 \\ \lambda_2= & \frac{1}{2 a^2 b^2}\left(a^2 b^2 u^2+a^2 b^2 v^2+a^2+b^2-\right. \\ & \left.\sqrt{\left(a^2b^2u^2+a^2 b^2 v^2+a^2+b^2\right)^2-4\left(a^4 b^2 u^2+a^2 b^4 v^2+a^2 b^2\right)}\right) \\ \lambda_3= & \frac{1}{2 a^2 b^2}\left(a^2 b^2 u^2+a^2 b^2 v^2+a^2+b^2+\right. \\ & \left.\sqrt{\left(a^2b^2u^2+a^2 b^2 v^2+a^2+b^2\right)^2-4\left(a^4 b^2 u^2+a^2 b^4 v^2+a^2 b^2\right)}\right) \end{align} Setting $\lambda_2=\lambda_3$ I get $$(a^2 b^2 u^2 + a^2 b^2 v^2+a^2 + b^2)^2 - 4 (a^4 b^2 u^2 + a^2 b^4 v^2+a^2 b^2)=0$$ Factorize (WA computation) $$0= (a^2 b^2 u^2 - 2 i a^2 b^2 u v - a^2 b^2 v^2 - a^2 + b^2) (a^2 b^2 u^2 + 2 i a^2 b^2 u v - a^2 b^2 v^2 - a^2 + b^2)$$ both real part and imaginary part must be zero, \begin{align} &a^2 b^2 u^2 - a^2 b^2 v^2 - a^2 + b^2=0\\ & u v=0 \end{align} If $u=0$, then $a^2b^2v^2=-a^2+b^2<0$, impossible.
If $v=0$, then $a^2b^2u^2=a^2-b^2$, I get $$u=\pm\frac{\sqrt{a^2-b^2}}{ab}$$
So $\lambda_2=\lambda_3=\frac{1}{b^2}$
The axis of the cylinder is $x/a+uz=y/b+vz=0$
The plane $-x u a - y v b + z = 0$ is perpendicular to the axis of the cylinder.
The section of the cylinder by the plane $-x u a - y v b + z = 0$ is a circle of radius $1/\sqrt{\lambda_2}=b$.
The above found there are only $2$ circular cylinders through a given ellipse.
Can we generalize the result to cones? (The cylinder case is the limit $\vartheta\to0$)
I guess:
Given an ellipse $x^2 / a^2 + y^2 / b^2 = 1\;(a>b>0)$ on $xy$-plane.
Given the opening angle $\vartheta\in(0,\pi)$ of the circular cone, there are only $4$ circular cones through the given ellipse.
The number is $4$ because reflections about $yz$-plane and $xy$-plane give different cones.
The $4$ cones will all be symmetric about $xz$-plane. Their vertices lie in each of $4$ quadrants of $xz$-plane.
