1

I was trying to solve this previous post by Mittens. I ended up having the answer for a different integral! And worse, Wolphram says it is $\approx 2,90179$, I found $3\pi/4\approx 2,356$. Anyways. Here is what I want to solve now:

Compute $$\int_{-\infty}^\infty \frac{dx}{\left(\frac89x^2+\frac23\right)\left({\frac{x^2}{3}+1}\right)^{3/4}}$$

We could approach this using complex analysis. Consider the following functions: $$f_1(z)=\frac{1}{\left(\frac89z^2+\frac23\right)e^{{\frac{1}{2}}\ln\left(\frac{z}{\sqrt{3}}-i\right)}}$$

$$ f_2(z)=\frac{1}{\left(\frac89z^2+\frac23\right)e^{{\frac{1}{2}}\ln\left(\frac{z}{\sqrt{3}}+i\right)}}$$

We notice that $\frac{z}{\sqrt{3}}-i=\frac{x}{\sqrt{3}}+i(y-1)$ which will always have an imaginary component in the following contour, so we are safe with the main branch of the logarithm regarding $f_1$:

enter image description here

By integrating $f_1$ there we see that on $C_R$:

$$ \left|\int_{C_R} f_1(z) dz\right|\leq \int_{-\pi}^0 \frac{R}{\left(\frac{8}{9}R^2-\frac{2}{3}\right)e^{\frac{1}{2}\ln(R)}}d\theta=\frac{\pi R}{\left(\frac{8}{9}R^2-\frac{2}{3}\right)\sqrt{R}}\xrightarrow{R\rightarrow \infty} 0$$

Furthermore, we have residues on $z^2=-\frac{3}{4}$, or equivalently, $z=\pm i \frac{\sqrt{3}}{2}$. Inside our contour, however, we need only compute:

$$\text{Res}_{z=-i\frac{\sqrt{3}}{2}}f_1(z)=\frac{1}{\frac{8}{9}\left(-2i\frac{\sqrt{3}}{2}\right)e^{\frac{1}{2}\ln(\frac{-i}{2}-i)}}=\frac{1}{\frac{-8i\sqrt{3}}{9}e^{\frac{1}{2}\left(\ln(\frac{3}{2})+i\frac{-\pi}{2}\right)}}=\frac{\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}}{\frac{-8i}{3\sqrt{2}}}$$

Hence, taking the limit (and observing that our contour is counterclockwise) yields:

$$-\int_{-\infty}^\infty f_1(x) dx=2\pi \frac{\sqrt{2}}{2}\frac{3\sqrt{2}}{-8}(1+i)=\frac{-3\pi}{4}(1+i)$$

Similarly, taking the reflected contour with respect to the $x$ axis we may integrate $f_2(z)$, because it will be imaginary there and hence our branch logarithm will be well defined.

enter image description here

The integral over $C_r$ will vanish again and the residue will be

$$\text{Res}_{z=i\frac{\sqrt{3}}{2}}f_2(z)=\frac{1}{\frac{8}{9}\left(2i\frac{\sqrt{3}}{2}\right)e^{\frac{1}{2}\ln(\frac{i}{2}+i)}}=\frac{1}{\frac{8i\sqrt{3}}{9}e^{\frac{1}{2}\left(\ln(\frac{3}{2})+i\frac{\pi}{2}\right)}}=\frac{\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}}{\frac{8i}{3\sqrt{2}}}$$

Thus:

$$\int_{-\infty}^\infty f_2(z) dx=\frac{3\pi}{4}(1-i)$$

Of course, the logarithm is multiplicative in the range we are considering (one positive angle in $[0,\pi)$ and a negative angle in $(-\pi,0]$) from which it follows that:

$$\int_{-\infty}^{\infty}\frac{-e^{\frac{1}{2}\ln(\frac{x}{\sqrt{3}}-i)}+e^{\frac{1}{2}\ln(\frac{x}{\sqrt{3}}+i)}}{\left(\frac89x^2+\frac23\right)\sqrt{\frac{x^2}{3}+1}}dx=\int_{-\infty}^\infty f_1(z)-f_2(z) dx=\frac{3\pi i}{2}$$

Hence:

$$\int_{-\infty}^\infty \frac{2}{\left(\frac89x^2+\frac23\right)\left({\frac{x^2}{3}+1}\right)^{1/2-1/4+1/2}}dx=\int_{-\infty}^\infty \frac{-e^{\frac{1}{2}\ln(\sqrt{\frac{x^2}{3}+1)}}2\sin(Arg(\frac{x}{\sqrt{3}}-i)) }{\left(\frac89x^2+\frac23\right)\sqrt{\frac{x^2}{3}+1}} dx=\frac{3\pi }{2}$$

Finally (to our sadness):

$$\int_{-\infty}^\infty \frac{dx}{\left(\frac89x^2+\frac23\right)\left({\frac{x^2}{3}+1}\right)^{3/4}}=\frac{3\pi}{4}$$

polychroma
  • 3,291
Kadmos
  • 3,243
  • Calling the integrand $f$, you want $\int_0^\infty2f(x)dx=\int_0^\infty x^{-1/2}f(x^{1/2})dx$. Now try a keyhole contour. Does that help? – J.G. May 08 '24 at 12:08
  • That is a very nice idea. Thanks. :). I will try it later. – Kadmos May 08 '24 at 12:49
  • @J.G. I think it doesn't work: $z/3+1$ will lie in the positive real axis when $\gamma_\epsilon$ is made small (at least in the keyhole contour I am thinking of with $\log$ without the real axis.). – Kadmos May 08 '24 at 16:34

1 Answers1

3

If you are not obliged to use contour integration $$I=\int_{-\infty}^\infty \frac{dx}{\left(\frac89x^2+\frac23\right)\left({\frac{x^2}{3}+1}\right)^{3/4}}$$ $$I=2\int_{0}^\infty \frac{dx}{\left(\frac89x^2+\frac23\right)\left({\frac{x^2}{3}+1}\right)^{3/4}}$$

$$\sqrt[4]{\frac{x^2}{3}+1}=t\quad \implies \quad I=6 \sqrt{3}\int_1^\infty \frac{dt}{ \left(4 t^4-3\right)\sqrt{t^4-1}}$$ Use partial fraction decomposition

$$I=3\int_1^\infty \Bigg(\frac{1}{2 t^2-\sqrt{3}}-\frac{1}{2 t^2+\sqrt{3}} \Bigg) \frac{dt}{ \sqrt{t^4-1}}$$

the antiderivative results in two simple elliptic integrals and the final result reduces to a Gaussian hypergeometric function $$I=\sqrt{3 \pi }\,\,\frac{ \Gamma \left(\frac{5}{4}\right)}{\Gamma \left(\frac{3}{4}\right)}\,\, _2F_1\left(\frac{1}{2},\frac{3}{4}; \frac{7}{4};\frac{3}{4}\right)$$ which is the number produced by Wolfram Alpha.