Please check the example for clearer understanding of $S_k$
We all know the formula of tan($A_1+A_2+A_3+\cdots+A_n)=$ summation of tan of terms ($A_1,A_2...$) taken once (Let this be $S_1$) - summation of tan of terms taken thrice at a time (Let this be $S_3$) + summation of tan of terms taken 5 at a time (Let this be $S_5$)... (Odd terms at numerator alternatively - and +)
$$÷$$
1 - summation of tan of terms taken twice at a time (Let this be $S_2$) + summation of tan of terms taken 4 at a time (Let this be $S_4$)... (Even terms at denominator alternatively - and +)
$$\Rightarrow\tan(A_1+A_2+A_3+\cdots+A_n) = \frac{S_1-S_3+S_5-S_7...}{1-S_2+S_4-S_6...}$$
For example lets take $$tan(A+B+C)=\frac{(\tan A+\tan B+\tan C)-(\tan A\tan B\tan C)}{1-(\tan A\tan B+\tan B\tan C+\tan C\tan A)}$$
Here,
$$S_1=\tan A+\tan B+\tan C\\S_2=\tan A\tan B+\tan B\tan C+\tan C\tan A\\S_3=\tan A\tan B\tan C$$
What is the proof for this formula.