Let $\mathcal{I}$ denote the value of the following (convergent) improper integral:
$$\mathcal{I}:=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{x-2}{\left(x^{2}+x+4\right)\sqrt{x^{2}+2x+4}}\approx-1.52069.$$
Using the Euler substitution
$$\sqrt{x^{2}+2x+4}=x+y\implies x=\frac{4-y^{2}}{2(y-1)},$$
we can rewrite $\mathcal{I}$ as an integral of a rational function:
$$\begin{align}
\mathcal{I}
&=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{x-2}{\left(x^{2}+x+4\right)\sqrt{x^{2}+2x+4}}\\
&=\int_{+\infty}^{1}\mathrm{d}y\,\frac{(y^{2}+4y-8)}{2(y-1)^{2}}\cdot\frac{1}{\left[\frac{4-y^{2}}{2(y-1)}\right]^{2}+\left[\frac{4-y^{2}}{2(y-1)}\right]+4};~~~\small{\left[x=\frac{4-y^{2}}{2(y-1)}\right]}\\
&=-\int_{1}^{\infty}\mathrm{d}y\,\frac{2y^{2}+8y-16}{y^{4}-2y^{3}+10y^{2}-24y+24}.\\
\end{align}$$
We'd like to find a way to express the quartic in the denominator of the integrand as a difference of squares of the form
$$y^{4}-2y^{3}+10y^{2}-24y+24=\left(y^{2}+ay+b\right)^{2}-\left(cy+d\right)^{2},$$
for suitable values of $(a,b,c,d)\in\mathbb{R}^{4}$. Expanding the RHS and matching coefficients, it can be shown that
$$y^{4}-2y^{3}+10y^{2}-24y+24=\left(y^{2}-y+6\right)^{2}-3\left(y+2\right)^{2}.$$
We can then use partial fractions and integrate to obtain
$$\begin{align}
\mathcal{I}
&=-\int_{1}^{\infty}\mathrm{d}y\,\frac{2y^{2}+8y-16}{y^{4}-2y^{3}+10y^{2}-24y+24}\\
&=-\int_{1}^{\infty}\mathrm{d}y\,\frac{2y^{2}+8y-16}{\left(y^{2}-y+6\right)^{2}-3\left(y+2\right)^{2}}\\
&=-\int_{1}^{\infty}\mathrm{d}y\,\frac{2y^{2}+8y-16}{\left[\left(y^{2}-y+6\right)-\sqrt{3}\left(y+2\right)\right]\left[\left(y^{2}-y+6\right)+\sqrt{3}\left(y+2\right)\right]}\\
&=-\int_{1}^{\infty}\mathrm{d}y\,\frac{2y^{2}+8y-16}{\left[y^{2}-\left(1+\sqrt{3}\right)y+6-2\sqrt{3}\right]\left[y^{2}-\left(1-\sqrt{3}\right)y+6+2\sqrt{3}\right]}\\
&=-\int_{1}^{\infty}\mathrm{d}y\,\frac{1}{\sqrt{3}}\left[\frac{2y-\left(1+\sqrt{3}\right)}{y^{2}-\left(1+\sqrt{3}\right)y+6-2\sqrt{3}}-\frac{2y-\left(1-\sqrt{3}\right)}{y^{2}-\left(1-\sqrt{3}\right)y+6+2\sqrt{3}}\right]\\
&=-\frac{1}{\sqrt{3}}\int_{1}^{\infty}\mathrm{d}y\,\frac{d}{dy}\left[\ln{\left(y^{2}-\left(1+\sqrt{3}\right)y+6-2\sqrt{3}\right)}-\ln{\left(y^{2}-\left(1-\sqrt{3}\right)y+6+2\sqrt{3}\right)}\right]\\
&=\frac{1}{\sqrt{3}}\left[\ln{\left(1-\left(1+\sqrt{3}\right)+6-2\sqrt{3}\right)}-\ln{\left(1-\left(1-\sqrt{3}\right)+6+2\sqrt{3}\right)}\right]\\
&=-\frac{1}{\sqrt{3}}\left[\ln{\left(2+\sqrt{3}\right)}-\ln{\left(2-\sqrt{3}\right)}\right]\\
&=-\frac{2}{\sqrt{3}}\ln{\left(2+\sqrt{3}\right)}.\blacksquare\\
\end{align}$$