I'm trying to show that a subring of $M_2(\mathbb{R})$ is isomorphic to $\mathbb{C}$. I know it works because I already have matrices of the form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. I thought I could prove that the isomorphism works before and after addition and multiplication. Is that sufficient? Here's my math.
$\phi(M_1+M_2) $$= \phi(\begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix}+ \begin{pmatrix} a_2 & b_2 \\ -b_2 & a_2 \end{pmatrix})$ $$=\phi(\begin{pmatrix} a_1+a_2 & b_1+b_2 \\ -b_1-b_2 & a_1+a_2 \end{pmatrix})$$ $$=a_1+a_2+(b_1+b_2)i$$
$\phi(M_1)+\phi(M_2)$ $$=\phi(\begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix})+\phi(\begin{pmatrix} a_2 & b_2 \\ -b_2 & a_2 \end{pmatrix})$$ $=a_1+b_1i+a_2+b_2i=a_1+a_2+(b_1+b_2)i$
$\phi(M_1M_2)$ $=\phi(\begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix}\begin{pmatrix} a_2 & b_2 \\ -b_2 & a_2 \end{pmatrix})$ $=a_1a_2-b_1b_2+(a_1b_2+a_2b_1)i$
$\phi(M_1)\phi(M_2)=\phi(\begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix})\phi(\begin{pmatrix} a_2 & b_2 \\ -b_2 & a_2 \end{pmatrix})$ $=(a_1+b_1i)(a_2+b_2i)$ $=a_1a_2+a_1b_2i+a_2b_1i+b_1b_2i^2$ $=a_1a_2-b_1b_2+(a_1b_2+a_2b_1)i$
I'm not sure why my lines aren't working. Those are supposed to be 2x2 matrices. Is this sufficient, or must I mention the kernel and whatnot?