The prime zeta function is defined for $\mathfrak{R}(s)>1$ as
$P(s)=\sum_{p} \ p^{-s}$, where $p \in \mathbb{P}$.
It is well-know this series converges whenever $\mathfrak{R}(s)>1$.
Now, consider the infinite sum
$\sum_{p \geq x} \ p^{-s}$, where $x \in \mathbb{R}$ and $x > 2$.
How can I find a lower bound close enough to this sum?
I mean if there exists some smooth function $f(y, z)$ on real domain such that
$\sum_{p \geq x} \ p^{-s} > f(x, s) > 0$.