My Attempt
The integral I'm trying to solve is
\begin{align*} I_1 &= \int_{0}^{\infty} \frac{\log(x)}{(1+x+y)^{5/2}} \mathrm{d} x. \end{align*}
Letting $u=\frac{1}{(1+x+y)^{3/2}}$, we have
\begin{align*} I_1 &= \frac{2}{3} \int_{0}^{(1+y)^{-3/2}} \log \left( \frac{1-u^{2/3}(1+y)}{u^{2/3}} \right) \mathrm{d} u\\ &= \frac{2}{3} \int_{0}^{(1+y)^{-3/2}} \log \left[ \frac{(1+u^{1/3}\sqrt{1+y})(1-u^{1/3}\sqrt{1+y})}{u^{2/3}} \right] \mathrm{d} u\\ &= \frac{2}{3} \biggl[ \underbrace{\int_{0}^{(1+y)^{-3/2}} \log(1+u^{1/3}\sqrt{1+y}) \mathrm{d} u}_{I_2} \, + \, \underbrace{\int_{0}^{(1+y)^{-3/2}} \log(1-u^{1/3}\sqrt{1+y}) \mathrm{d} u}_{I_3} \biggr.\\ &\qquad \biggl. - \, \frac{2}{3} \underbrace{\int_{0}^{(1+y)^{-3/2}} \log(u) \mathrm{d} u}_{I_4} \biggr]. \end{align*}
I have found that
\begin{align*} I_2 &= (1+y)^{3/2} \log(2+y) - \frac{1}{(1+y)^2} \left[ \frac{1}{3} (y+2)^3 - \frac{3}{2} (y+2)^2 + 3(y+2) - \log(y+2) - \frac{11}{6} \right] \end{align*}
and
\begin{align*} I_4 &= (1+y)^{3/2} \left[ \frac{3}{2} \log(1+y) - 1 \right]. \end{align*}
The following is my attempt at solving $I_3$. Letting $v=1-u^{1/3}\sqrt{1+y}$, we have
\begin{align} \nonumber I_3 &= \frac{1}{(1+y)^{3/2}} \int_{-y}^{1} 3(v-1)^2 \log(v) \mathrm{d} v\\ \nonumber &= \frac{1}{(1+y)^{3/2}} \left\{ \left[ \log(v) \left( v^3-3v^2+3v \right) \right]_{-y}^{1} - \int_{-y}^{1} \left( v^3 -3v^2 + 3v \right) \cdot \frac{1}{v} \mathrm{d} v \right\}\\ \nonumber &= \frac{1}{(1+y)^{3/2}} \left\{ \left[ 0-\log(-y) \left( -y^3-3y^2-3y \right) \right] - \int_{-y}^{1} \left( v^2-3v+3 \right) \mathrm{d} v \right\}\\ \nonumber &= \frac{1}{(1+y)^{3/2}} \left\{ -\log(-y) \left( -y^3-3y^2-3y \right) - \left[ \frac{1}{3}v^3 - \frac{3}{2} v^2 + 3v \right]_{-y}^{1} \right\}\\ &= \frac{1}{(1+y)^{3/2}} \left[ -\log(-y) \left( -y^3-3y^2-3y \right) - \frac{11}{6} - \frac{1}{3} y^3 - \frac{3}{2} y^2 - 3y \right]. \tag{1} \end{align}
Question
Before dealing with the main integral ($I_1$), I have proved that
\begin{align*} \int_{0}^{\infty} \frac{\log(x)}{(1+x)^{5/2}} \mathrm{d} x = \frac{4}{3} [\log(2)-1], \end{align*}
that is $I_1$ with $y=0$. Now, I would like to prove that
\begin{align*} I_1 &= \frac{2\log\left(y+1\right)+4\log\left(2\right)-4}{3\left(y+1\right)^\frac{3}{2}}. \end{align*}
In (1), I encountered a $\log(-y)$. Does this mean that I have to restrict $y$ to $y \leq 0$? How could I deal with this? Can anyone help me with this problem? I am open to any suggestions/solutions, including that for the very first integral in the question. Any help/feedback is much appreciated. Thank you!