$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
& \color{#44f}{\lim_{n \to \infty}
{1^{p} + 3^{p} + \cdots + \pars{2n + 1}^{p} \over n^{p+1}}}\ =\
\overbrace{\lim_{n \to \infty}\
{\pars{2n + 3}^{p} \over \pars{n + 1}^{\, p + 1} - n^{p + 1}}}
^{\substack{\ds{Stolz\mbox{-}Ces{\grave a}ro}\\[1mm]
\ds{Theorem}\\[0.1mm]\mbox{}}}
\\[5mm] = & \ 2^{p}\lim_{n \to \infty}\braces{{1 \over n^{p + 1}}\,{\,n^{p}\,\bracks{1 + 3/\pars{2n}}^{\, p} \over \pars{1 + 1/n}^{p + 1} - 1}} =
2^{p}\lim_{n \to \infty}\,\bracks{{1 \over n}\,{1 \over \pars{p + 1}/n}}
\\[5mm] = & \ \bbx{\color{#44f}{2^{p} \over p + 1}} \\ &
\end{align}