For a given $u \in L^2(\mathbb{R}^N)$, there is a unique $S(u) \in H^1(\mathbb{R}^N)$ such that $$ \int_{\mathbb{R}^N} \nabla S(u) \nabla \varphi + S(u) \varphi = \int_{\mathbb{R}^N} u \varphi, \quad \forall \varphi \in H^1_{\mathbb{R}^N}. $$ I want to prove that, for $u \in L^2(\mathbb{R}^N)$, the following inequality holds $$ (1) \,\,\,\,\, \int_{\mathbb{R}^N} u^{+} S(u^+) \leq \int_{\mathbb{R}^N} u S(u). $$ What I know and can be used: $\int_{\mathbb{R}^N} u S(u) \geq 0$ for any $u \in L^2(\mathbb{R}^N)$ and $\int_{\mathbb{R}^N} u S(v) = \int_{\mathbb{R}^N} v S(u)$ for any $u,v \in L^2(\mathbb{R}^N)$.
I know how to prove $(1)$ assuming two situations, which I don't know it if true or not. The first one is assuming $u(x)S(u^+)(x) \geq 0$ for $x \in \{x \in \mathbb{R}^N : u(x) < 0\}$. The second one is assuming $\int_{\mathbb{R}^N} u^-S(u^+) = 0$. Some of this two conditions are true in fact?