It certainly gives rise to an interesting proof. Suppose we claim that
$$\frac{2^{4n}}{2n+1} {2n\choose n}^{-1}
= \sum_{m=0}^n \frac{1}{2m+1} {2m\choose m} {2n-2m\choose n-m}.$$
Re-indexing we find,
$$\sum_{m=0}^n \frac{1}{2n-2m+1} {2m\choose m} {2n-2m\choose n-m}
\\ = [z^{2n+1}] \log\frac{1}{1-z}
\sum_{m=0}^n z^{2m} {2m\choose m} {2n-2m\choose n-m}
\\ = [z^{2n+1}] \log\frac{1}{1-z}
\sum_{m=0}^n z^{2m} {2m\choose m} [w^{n-m}] \frac{1}{\sqrt{1-4w}}.$$
We see that the extractor in $w$ enforces the upper range of the sum,
$$[z^{2n+1}] \log\frac{1}{1-z} [w^n] \frac{1}{\sqrt{1-4w}}
\sum_{m\ge 0} z^{2m} {2m\choose m} w^m
\\ = [z^{2n+1}] \log\frac{1}{1-z} [w^n] \frac{1}{\sqrt{1-4w}}
\frac{1}{\sqrt{1-4wz^2}}.$$
Working with the square roots,
$$[w^n] \frac{1}{\sqrt{1-4w}}
\frac{1}{\sqrt{1-4w-4w(z^2-1)}}
\\ = [w^n] \frac{1}{1-4w}
\frac{1}{\sqrt{1-4w(z^2-1)/(1-4w)}}
\\ = \sum_{q=0}^n 4^{n-q} [w^q]
\sum_{p=0}^q {2p\choose p} \frac{w^p (z^2-1)^p}{(1-4w)^p}
\\ = \sum_{q=0}^n 4^{n-q}
\sum_{p=0}^q {2p\choose p} (z^2-1)^p
4^{q-p} {q-1\choose p-1}
\\ = 4^n \sum_{q=0}^n
\sum_{p=0}^q {2p\choose p} (z^2-1)^p
4^{-p} {q-1\choose p-1}
\\ = 4^n \sum_{p=0}^n {2p\choose p} (z^2-1)^p
4^{-p} \sum_{q=p}^n {q-1\choose p-1}
\\ = 4^n \sum_{p=0}^n {2p\choose p} (z^2-1)^p
4^{-p} \sum_{q=0}^{n-p} {q+p-1\choose p-1}
\\ = 4^n \sum_{p=0}^n {2p\choose p} (z^2-1)^p
4^{-p} [v^{n-p}] \frac{1}{1-v}
\frac{1}{(1-v)^p}
\\ = 4^n \sum_{p=0}^n {2p\choose p} (z^2-1)^p
4^{-p} {n\choose p}
\\ = 4^n \sum_{p=0}^n {2p\choose p}
4^{-p} {n\choose p}
\sum_{q=0}^p {p\choose q} (-1)^{p-q} z^{2q}.$$
Applying the extractor in $z$,
$$4^n \sum_{p=0}^n {2p\choose p}
4^{-p} {n\choose p}
\sum_{q=0}^p {p\choose q} (-1)^{p-q} \frac{1}{2n+1-2q}.$$
For the inner sum introduce
$$f(z) = \frac{p!}{2n+1-2z} \prod_{r=0}^p \frac{1}{z-r}.$$
This has the property that
$$\;\underset{z=q}{\mathrm{res}}\; f(z)
= \frac{p!}{2n+1-2q} \prod_{r=0}^{q-1} \frac{1}{q-r}
\prod_{r=q+1}^p \frac{1}{q-r}
\\ = \frac{p!}{2n+1-2q} \frac{1}{q!} \frac{(-1)^{p-q}}{(p-q)!}
= {p\choose q} (-1)^{p-q} \frac{1}{2n+1-2q}.$$
Residues sum to zero and the residue at infinity is zero by inspection
so we may evaluate the sum using minus the residue at $z=n+1/2$ writing
$$f(z) = - \frac{1}{2}
\frac{p!}{z-(n+1/2)} \prod_{r=0}^p \frac{1}{z-r}$$
to get
$$\frac{1}{2} p! \prod_{r=0}^p \frac{1}{n+1/2-r}
= \frac{1}{2} p! \frac{1}{(p+1)!} {n+1/2\choose p+1}^{-1}
= \frac{1}{2n+1} {n-1/2\choose p}^{-1}.$$
Collecting what we have,
$$\frac{4^n}{2n+1} \sum_{p=0}^n {2p\choose p}
4^{-p} {n\choose p} {n-1/2\choose p}^{-1}.$$
For the quotient of the right binomial coefficients we find
$$\prod_{r=0}^{p-1} \frac{n-r}{n-1/2-r}
= \prod_{r=0}^{p-1} \frac{2n-2r}{2n-1-2r}
\\ = 2^p \frac{n!}{(n-p)!}
\prod_{r=0}^{p-1} \frac{1}{2n-1-2r}
\\ = 2^p \frac{n!}{(n-p)!}
\frac{(2n-1-2p)!}{(2n-1)!}
\frac{2^{n-1}(n-1)!}{2^{n-p-1} (n-1-p)!}
\\ = 2^{2p} {2n-1\choose n}^{-1} {2n-1-2p\choose n-1-p}.$$
This was for $p\lt n$. Note that the above yields $2^{2n} {2n-1\choose
n}^{-1}$ for $p=n$ but we should get
$${n-1/2\choose n}^{-1} = \frac{n!}{\prod_{r=0}^{n-1} (n-1/2-r)}
= \frac{n! 2^n}{\prod_{r=0}^{n-1} (2n-1-2r)}
\\ = n! 2^n \frac{2^{n-1} (n-1)!}{(2n-1)!}
= 2^{2n-1} {2n-1\choose n}^{-1}.$$
To merge the two cases we use ${2n-1-2p\choose n-1-p} = \frac{1}{2}
{2n-2p\choose n-p}$ to get
$$2^{2p-1} {2n-1\choose n}^{-1} {2n-2p\choose n-p}.$$
We now obtain for $p=n$ the value $2^{2n-1} {2n-1\choose n}^{-1}$ as
required. Re-capitulating what we have,
$$\frac{4^n}{2n+1} {2n\choose n}^{-1}
\sum_{p=0}^n {2p\choose p} {2n-2p\choose n-p}
\\ = \frac{4^n}{2n+1} {2n\choose n}^{-1}
\sum_{p=0}^n
[z^p] \frac{1}{\sqrt{1-4z}}
[z^{n-p}] \frac{1}{\sqrt{1-4z}}
\\ = \frac{4^n}{2n+1} {2n\choose n}^{-1}
[z^n] \frac{1}{1-4z}
= \frac{2^{4n}}{2n+1} {2n\choose n}^{-1}.$$
This is the claim. Here have used that $\frac{1}{2} {2n-1\choose
n}^{-1} = {2n\choose n}^{-1}.$
$$ \prod\limits_{m=1}^n \frac{2m}{2m+1} = \frac{(2n)!!}{(2n+1)!!} = \frac{(2n)!!^2}{(2n+1)!} = \frac{2^{2n} n!^2}{(2n+1)!} = \frac{2^{2n}}{2n+1} \binom{2n}{n}^{-1} $$
Maybe some probabilistic interpretation over paths in $n \times n$ grid is possible?
– Oleksandr Kulkov Apr 20 '24 at 22:46