6

Let $I(n) = \int_{0}^\pi \sin^n(x) dx$ , using $\sin^2(x) = 1-\cos^2(x)$ and integrating by parts we get.

$$ \begin{align} I(n) = \dfrac{n-1}{n} I(n-2) \end{align} $$

With $I(0) = \pi$ and $I(1) = 2$ now let $y: \mathbb{R} \to \mathbb{R}$ be the generating function with coefficients $I(n)$ e.g. $$y(x) = I(0) +I(1)x + I(2) x^2 +\cdots$$ Since $nI(n) -(n-1) I(n-2) = 0$ we have, $$ y'(1-x^2) - xy = 2$$ subject to $y(0) = \pi$ and $y'(0) = 2$

This ODE has the solution: $$ y(x) = 2\dfrac{\arcsin(x)}{\sqrt{1-x^2}} + \dfrac{\pi}{\sqrt{1-x^2}} $$ This implies $$ \dfrac{d}{dx} \int y(x) dx = \dfrac{d}{dx} \left[ \arcsin^2(x) +\pi \arcsin(x) \right]$$ since the Taylor series for $\arcsin(x)$ is $$\sum_{n=0}^\infty \dfrac{x^{2n+1}}{2^{2n} (2n+1)} {2n \choose n} $$ so combining the above we get $$ y(x) = 2\sum_{n=0}^\infty\sum_{m=0}^\infty \dfrac{x^{2n + 2m +1}}{2^{2n+2m} (2n+1)} {2n \choose n}{2m \choose m} + \pi \sum_{n=0}^\infty \dfrac{x^{2n}}{2^{2n}} {2n \choose n} $$ We can rewrite the expression as, $$y(x) = 2\sum_{n=0}^\infty \dfrac{x^{2n+1}}{2^{2n}} \sum_{m=0}^n \dfrac{{2m \choose m} {2n-2m \choose n-m}}{2m+1} + \pi \sum_{n=0}^\infty \dfrac{x^{2n}}{2^{2n}} {2n \choose n}$$ finally by our assumption that the coefficient of $x^n$ is $I(n)$ and using the fact that: $$I(2n+1) = 2\prod_{m =1}^n \dfrac{2m}{2m+1}$$ and $$I(2n) = \pi \prod_{m=1}^n \dfrac{2m-1}{2m}$$ we get $$\prod_{m =1}^n \dfrac{2m}{2m+1} = \dfrac{1}{2^{2n}} \sum_{m=0}^n \dfrac{{2m \choose m} {2n-2m \choose n-m}}{2m+1} $$

This expression just looks funky. I plugged in some values and it does seem to hold. I can't seem to find anything about this expression but maybe it just isn't that useful?

RobPratt
  • 50,938
Sam
  • 61

2 Answers2

6

It certainly gives rise to an interesting proof. Suppose we claim that

$$\frac{2^{4n}}{2n+1} {2n\choose n}^{-1} = \sum_{m=0}^n \frac{1}{2m+1} {2m\choose m} {2n-2m\choose n-m}.$$

Re-indexing we find,

$$\sum_{m=0}^n \frac{1}{2n-2m+1} {2m\choose m} {2n-2m\choose n-m} \\ = [z^{2n+1}] \log\frac{1}{1-z} \sum_{m=0}^n z^{2m} {2m\choose m} {2n-2m\choose n-m} \\ = [z^{2n+1}] \log\frac{1}{1-z} \sum_{m=0}^n z^{2m} {2m\choose m} [w^{n-m}] \frac{1}{\sqrt{1-4w}}.$$

We see that the extractor in $w$ enforces the upper range of the sum,

$$[z^{2n+1}] \log\frac{1}{1-z} [w^n] \frac{1}{\sqrt{1-4w}} \sum_{m\ge 0} z^{2m} {2m\choose m} w^m \\ = [z^{2n+1}] \log\frac{1}{1-z} [w^n] \frac{1}{\sqrt{1-4w}} \frac{1}{\sqrt{1-4wz^2}}.$$

Working with the square roots,

$$[w^n] \frac{1}{\sqrt{1-4w}} \frac{1}{\sqrt{1-4w-4w(z^2-1)}} \\ = [w^n] \frac{1}{1-4w} \frac{1}{\sqrt{1-4w(z^2-1)/(1-4w)}} \\ = \sum_{q=0}^n 4^{n-q} [w^q] \sum_{p=0}^q {2p\choose p} \frac{w^p (z^2-1)^p}{(1-4w)^p} \\ = \sum_{q=0}^n 4^{n-q} \sum_{p=0}^q {2p\choose p} (z^2-1)^p 4^{q-p} {q-1\choose p-1} \\ = 4^n \sum_{q=0}^n \sum_{p=0}^q {2p\choose p} (z^2-1)^p 4^{-p} {q-1\choose p-1} \\ = 4^n \sum_{p=0}^n {2p\choose p} (z^2-1)^p 4^{-p} \sum_{q=p}^n {q-1\choose p-1} \\ = 4^n \sum_{p=0}^n {2p\choose p} (z^2-1)^p 4^{-p} \sum_{q=0}^{n-p} {q+p-1\choose p-1} \\ = 4^n \sum_{p=0}^n {2p\choose p} (z^2-1)^p 4^{-p} [v^{n-p}] \frac{1}{1-v} \frac{1}{(1-v)^p} \\ = 4^n \sum_{p=0}^n {2p\choose p} (z^2-1)^p 4^{-p} {n\choose p} \\ = 4^n \sum_{p=0}^n {2p\choose p} 4^{-p} {n\choose p} \sum_{q=0}^p {p\choose q} (-1)^{p-q} z^{2q}.$$

Applying the extractor in $z$,

$$4^n \sum_{p=0}^n {2p\choose p} 4^{-p} {n\choose p} \sum_{q=0}^p {p\choose q} (-1)^{p-q} \frac{1}{2n+1-2q}.$$

For the inner sum introduce

$$f(z) = \frac{p!}{2n+1-2z} \prod_{r=0}^p \frac{1}{z-r}.$$

This has the property that

$$\;\underset{z=q}{\mathrm{res}}\; f(z) = \frac{p!}{2n+1-2q} \prod_{r=0}^{q-1} \frac{1}{q-r} \prod_{r=q+1}^p \frac{1}{q-r} \\ = \frac{p!}{2n+1-2q} \frac{1}{q!} \frac{(-1)^{p-q}}{(p-q)!} = {p\choose q} (-1)^{p-q} \frac{1}{2n+1-2q}.$$

Residues sum to zero and the residue at infinity is zero by inspection so we may evaluate the sum using minus the residue at $z=n+1/2$ writing

$$f(z) = - \frac{1}{2} \frac{p!}{z-(n+1/2)} \prod_{r=0}^p \frac{1}{z-r}$$

to get

$$\frac{1}{2} p! \prod_{r=0}^p \frac{1}{n+1/2-r} = \frac{1}{2} p! \frac{1}{(p+1)!} {n+1/2\choose p+1}^{-1} = \frac{1}{2n+1} {n-1/2\choose p}^{-1}.$$

Collecting what we have,

$$\frac{4^n}{2n+1} \sum_{p=0}^n {2p\choose p} 4^{-p} {n\choose p} {n-1/2\choose p}^{-1}.$$

For the quotient of the right binomial coefficients we find

$$\prod_{r=0}^{p-1} \frac{n-r}{n-1/2-r} = \prod_{r=0}^{p-1} \frac{2n-2r}{2n-1-2r} \\ = 2^p \frac{n!}{(n-p)!} \prod_{r=0}^{p-1} \frac{1}{2n-1-2r} \\ = 2^p \frac{n!}{(n-p)!} \frac{(2n-1-2p)!}{(2n-1)!} \frac{2^{n-1}(n-1)!}{2^{n-p-1} (n-1-p)!} \\ = 2^{2p} {2n-1\choose n}^{-1} {2n-1-2p\choose n-1-p}.$$

This was for $p\lt n$. Note that the above yields $2^{2n} {2n-1\choose n}^{-1}$ for $p=n$ but we should get

$${n-1/2\choose n}^{-1} = \frac{n!}{\prod_{r=0}^{n-1} (n-1/2-r)} = \frac{n! 2^n}{\prod_{r=0}^{n-1} (2n-1-2r)} \\ = n! 2^n \frac{2^{n-1} (n-1)!}{(2n-1)!} = 2^{2n-1} {2n-1\choose n}^{-1}.$$

To merge the two cases we use ${2n-1-2p\choose n-1-p} = \frac{1}{2} {2n-2p\choose n-p}$ to get

$$2^{2p-1} {2n-1\choose n}^{-1} {2n-2p\choose n-p}.$$

We now obtain for $p=n$ the value $2^{2n-1} {2n-1\choose n}^{-1}$ as required. Re-capitulating what we have,

$$\frac{4^n}{2n+1} {2n\choose n}^{-1} \sum_{p=0}^n {2p\choose p} {2n-2p\choose n-p} \\ = \frac{4^n}{2n+1} {2n\choose n}^{-1} \sum_{p=0}^n [z^p] \frac{1}{\sqrt{1-4z}} [z^{n-p}] \frac{1}{\sqrt{1-4z}} \\ = \frac{4^n}{2n+1} {2n\choose n}^{-1} [z^n] \frac{1}{1-4z} = \frac{2^{4n}}{2n+1} {2n\choose n}^{-1}.$$

This is the claim. Here have used that $\frac{1}{2} {2n-1\choose n}^{-1} = {2n\choose n}^{-1}.$

Marko Riedel
  • 64,728
0

You can as well prove the equation directly by going in the opposite direction, although it doesn't seem to give much value or insight into what's going on or why.


We need to show that

$$ \frac{1}{2^{2n}} \sum\limits_{m=0}^n \frac{1}{2m+1} \binom{2m}{m}\binom{2(n-m)}{n-m} = \prod\limits_{m=1}^n \frac{2m}{2m+1} = f_{2n+1} $$

Let's find the generating function

$$ G(x) = \sum\limits_{n=0}^\infty f_{2n+1} x^{2n+1} $$

from the LHS:

$$ 2\sum\limits_{n=0}^\infty \sum\limits_{m=0}^n \left[\frac{(x/2)^{2m+1}}{2m+1} \binom{2m}{m}\right]\left[ \binom{2(n-m)}{n-m} (x/2)^{2(n-m)}\right] = 2 \left[\int A(\frac{x}{2})d\frac{x}{2}\right]\left[A(\frac{x}{2})\right], $$ where $A(x) = \sum\limits_{m=0}^\infty x^{2m} \binom{2m}{m} = \frac{1}{\sqrt{1-4x^2}}$, from which we get

$$ \boxed{G(x) = \frac{\arcsin x}{\sqrt{1-x^2}}} $$

This is essentially the odd part of the generating function that the OP got from the diffeq.


Now, from the right hand side, we get

$$ f_{n} = \frac{n-1}{n} f_{n-2} $$

with the base cases $f_{2n} = f_0=0$ and $f_1 = 1$. Removing denominators, we get

$$ n f_n = (n-1) f_{n-2}, $$

which in terms of the generating function

$$ F(x) = \sum\limits_{n=0}^\infty f_{2n+1} x^{2n+1} $$

and using the notation $\Delta = x \frac{\partial}{\partial x}$, translates into a diffeq:

$$ \boxed{\Delta F(x) = (\Delta - 1) x^2 F(x) + x} $$

Or, equivalently in terms of derivatives:

$$ (1-x^2)F'(x)= x F(x) + 1. $$

Surely enough, the solution is $F(x) = \frac{c_1+\arcsin x}{\sqrt{1-x^2}}$, and $c_1=0$ corresponds to $f_0=0$.


I hope someone eventually provides a meaningful combinatorial/probabilistic interpretation of this...