Let, $A=\begin{bmatrix}0&0&0&\dots&0&100&\\
0&0&0&\dots&99&0&\\
\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\
0&2&0&\dots&0&0\\
1&0&0&\dots&0&0
\end{bmatrix}_{100\times 100}$
I want to find eigenvalues of this matirx.
Finding $A-\lambda I$ and then its determinant does not seem to be a practical approach.
This is how i tried to solve:
Since, $A^2=\begin{bmatrix}100\times 1&0&0&\dots&0&0&\\
0&98\times 2&0&\dots&0&0&\\
\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\
0&0&0&\dots&2\times 98&0\\
0&0&0&\dots&0&1\times 100
\end{bmatrix}_{100\times 100}$
Now as eigenvalues of a diagonal matrix are precisely diagonal entries,so if I am allowed to take positive or negative square roots of eigenvalues of $A^2$ in order to find eigenvalues of A, then I can find eigenvalues of $A$ easily.
Or is there any better method to find eigenvalues of an antidiagonal matrix of order $n$?