My approach is to use the Maclaurin expansion and compute the derivative of the determinant.
$$
|B|=\sum_{m=0}^{n}\frac{x^{m}}{m!}\frac{\mathrm{d}^{m}|B|}{\mathrm{d}x^{m}}(x=0)
$$
The problem then becomes to show the following formula for the derivative.
$$
\frac{\mathrm{d}^{m}|B|}{\mathrm{d}x^{m}}(x=0)=\sum_{j_{1},\ldots,j_{m}=1}^{n}\left|\begin{array}{ccc}
a_{j_{1}j_{1}} & \cdots & a_{j_{1}j_{m}} \\\\
\vdots & \ddots & \vdots \\\\
a_{j_{m}j_{1}} & \cdots & a_{j_{m}j_{m}}
\end{array}\right|
$$
It can be verified as follows.
$$
\frac{\mathrm{d}|B|}{\mathrm{d}x}=\frac{\mathrm{d}}{\mathrm{d}x}\sum_{\sigma\in S_{n}}\text{sgn}(\sigma)b_{1\sigma(1)}b_{2\sigma(2)}\cdots b_{n\sigma(n)}
$$
$$
=\sum_{j=1}^{n}\sum_{\sigma\in S_{n}}\text{sgn}(\sigma)b_{1\sigma(1)}\cdots b_{(j-1)\sigma(j-1)}a_{j\sigma(j)}b_{(j+1)\sigma(j+1)}\cdots b_{n\sigma(n)}
$$
$$
=\sum_{j=1}^{n}\left|\begin{array}{ccc}
\vdots & & \vdots \\\\
b_{(j-1)1} & \cdots & b_{(j-1)n} \\\\
a_{j1} & \cdots & a_{jn} \\\\
b_{(j+1)1} & \cdots & b_{(j+1)n} \\\\
\vdots & & \vdots
\end{array}\right|\xrightarrow{x\to0}\sum_{j=1}^{n}a_{jj}
$$
$$
\frac{\mathrm{d}^{m}|B|}{\mathrm{d}x^{m}}=\sum_{j_{1},\ldots,j_{m}}^{\text{No duplicates}}\left|\begin{array}{ccc}
\vdots & & \vdots \\\\
b_{(j_{2}-1)1} & \cdots & b_{(j_{2}-1)n} \\\\
a_{j_{2}1} & \cdots & a_{j_{2}n} \\\\
b_{(j_{2}+1)1} & \cdots & b_{(j_{2}+1)n} \\\\
\vdots & & \vdots \\\\
b_{(j_{1}-1)1} & \cdots & b_{(j_{1}-1)n} \\\\
a_{j_{1}1} & \cdots & a_{j_{1}n} \\\\
b_{(j_{1}+1)1} & \cdots & b_{(j_{1}+1)n} \\\\
\vdots & & \vdots \\\\
b_{(j_{m}-1)1} & \cdots & b_{(j_{m}-1)n} \\\\
a_{j_{m}1} & \cdots & a_{j_{m}n} \\\\
b_{(j_{m}+1)1} & \cdots & b_{(j_{m}+1)n} \\\\
\vdots & & \vdots \\\\
\end{array}\right|
$$
$$
=\sum_{j_{1},\ldots,j_{m}}^{\text{No duplicates}}\sum_{\sigma\in S_{n}}\text{sgn}(\sigma)b_{1\sigma(1)}\cdots b_{(j_{2}-1)\sigma(j_{2}-1)}a_{j_{2}\sigma(j_{2})}b_{(j_{2}+1)\sigma(j_{2}+1)}\cdots b_{(j_{1}-1)\sigma(j_{1}-1)}a_{j_{1}\sigma(j_{1})}b_{(j_{1}+1)\sigma(j_{1}+1)}\cdots b_{(j_{m}-1)\sigma(j_{m}-1)}a_{j_{m}\sigma(j_{m})}b_{(j_{m}+1)\sigma(j_{m}+1)}\cdots b_{n\sigma(n)}
$$
$$
\xrightarrow{x\to0}\sum_{j_{1},\ldots,j_{m}}^{\text{No duplicates}}\sum_{\sigma\in S_{m}}\text{sgn}(\sigma)a_{j_{1}\sigma(j_{1})}\cdots a_{j_{m}\sigma(j_{m})}=\sum_{j_{1},\ldots,j_{m}}\left|\begin{array}{ccc}
a_{j_{1}j_{1}} & \cdots & a_{j_{1}j_{m}} \\\\
\vdots & \ddots & \vdots \\\\
a_{j_{m}j_{1}} & \cdots & a_{j_{m}j_{m}}
\end{array}\right|
$$
$$
\left(=m!\sum_{j_{1}<\ldots<j_{m}}\left|\begin{array}{ccc}
a_{j_{1}j_{1}} & \cdots & a_{j_{1}j_{m}} \\\\
\vdots & \ddots & \vdots \\\\
a_{j_{m}j_{1}} & \cdots & a_{j_{m}j_{m}}
\end{array}\right|\right)
$$
For the cofactors, I first calculated for $B_{21}$.
$$
B_{21}=-\left|\begin{array}{cccc}
b_{12} & b_{13} & \cdots & b_{1n} \\\\
b_{32} & b_{33} & \cdots & b_{3n} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
b_{n2} & b_{n3} & \cdots & b_{nn}
\end{array}\right|=\sum_{m=0}^{n-1}\frac{x^{m}}{m!}\frac{\mathrm{d}^{m}B_{21}}{\mathrm{d}x^{m}}(x=0)
$$
$$
B_{21}(x=0)=0,\quad \frac{\mathrm{d}B_{21}}{\mathrm{d}x}(x=0)=-\left|\begin{array}{cccc}
a_{12} & a_{13} & \cdots & a_{1n} \\\\
0 & 1 & \cdots & 0 \\\\
\vdots & \vdots & \ddots & \vdots \\\\
\end{array}\right|-\sum\left|\begin{array}{ccc}
0 & \cdots & 0 \\\\
\vdots & & \vdots \\\\
\end{array}\right|=-a_{12}
$$
$$
\frac{\mathrm{d}^{2}B_{21}}{\mathrm{d}x^{2}}=-\frac{\mathrm{d}}{\mathrm{d}x}\left|\begin{array}{cccc}
a_{12} & a_{13} & \cdots & a_{1n} \\\\
b_{32} & b_{33} & \cdots & b_{3n} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
\end{array}\right|-\frac{\mathrm{d}}{\mathrm{d}x}\left|\begin{array}{cccc}
b_{12} & b_{13} & \cdots & b_{1n} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
a_{j2} & a_{j3} & \ddots & a_{jn} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
\end{array}\right|
$$
$$
=-\sum_{j}\left|\begin{array}{cccc}
a_{12} & a_{13} & \cdots & a_{1n} \\\\
b_{32} & b_{33} & \cdots & b_{3n} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
a_{j2} & a_{j3} & \ddots & a_{jn} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
\end{array}\right|-\sum_{j}\left|\begin{array}{cccc}
a_{12} & a_{13} & \cdots & a_{1n} \\\\
b_{32} & b_{33} & \cdots & b_{3n} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
a_{j2} & a_{j3} & \ddots & a_{jn} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
\end{array}\right|
$$
$$
=-2\sum_{j}\sum_{\sigma\in S_{n}}\text{sgn}(\sigma)a_{1\sigma(1)}a_{j\sigma(j)}b_{2\sigma(2)}\cdots
$$
$$
\xrightarrow{x\to0}-2\sum_{j}\sum_{\sigma\in S_{2}}\text{sgn}(\sigma)a_{1\sigma(1)}a_{j\sigma(j)}=-2\left|\begin{array}{ccc}
a_{12} & a_{j2} \\\\
a_{1j} & a_{jj} \\\\
\end{array}\right|
$$
Thus, since $B_{kl}$ loses the diagonal components of the $l$th column and $k$th row and $x\to0$, the $k$th column (not row) and $l$th row (not column) become zero, we need to differentiate the $l$th row somewhere in the middle of differentiating $m$ times to make the whole $l$th row $\boldsymbol{a}_{l}$. When $m$ rows containing the $l$th row are selected for differentiation, there are $m$ times to differentiate the $l$th row, so
$$
B_{kl}(x=0)=0,\quad
\frac{\mathrm{d}^{m}B_{kl}}{\mathrm{d}x^{m}}(x=0)=(-1)^{k+l}m\sum_{j_{1},\ldots,j_{m-1}}\left|\begin{array}{cccc}
a_{lk} & a_{lj_{1}} & \cdots & a_{lj_{m-1}} \\\\
a_{j_{1}k} & a_{j_{1}j_{1}} & \cdots & a_{j_{1}j_{m-1}} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
a_{j_{m-1}k} & a_{j_{m-1}j_{1}} & \cdots & a_{j_{m-1}j_{m-1}}
\end{array}\right|
$$
Please let me know if there is a better way.