I supplement some details to Dawkins' answer.
(1) Show that $\tau_n\to \infty$ almost surely.
Throughout, fix some $\omega\in \Omega$. When $M$ is bounded, that is, $\exists K>0, \forall t>0, |M(t,\omega)|<K$. For this case, we have $\forall n>K$,
$$\tau_n(\omega)=\inf\{t>0:|M(t,\omega)|>n\}=\inf \emptyset=\infty$$
When $M$ is unbounded, define
$$\tau_n^k(\omega)=\inf \{k\geq t>0:|M(t,\omega)|>n\}$$
Since $M$ is continuous with null at zero, $t\mapsto M(t,\omega)$ is a bounded function in $(0,k]$. Applying the previous result, we have $\lim_{n\to \infty} \tau^k_n(\omega)=\infty$ for each $k$. We then have
$$\lim_{n\to \infty} \tau_n(\omega)=\lim_{n\to \infty}\lim_{k\to\infty}\tau^k_n(\omega)=\lim_{k\to \infty}\lim_{n\to\infty}\tau^k_n(\omega)=\lim_{k\to \infty} \infty = \infty,$$
where we can switch the two limits because $\tau_n^k(\omega)$ is increasing in both $n$ and $k$, according to this result.
(2) $\tau_n \to \infty$ a.s. implies $\tau_n\to \infty$ in probability.
Recall that a sequence of random variables $X_n$ is said to diverges to infinity in probability if
$$\forall K>0, \lim_{n\to \infty} P(X_n>K)=1$$
A sequence of random variables $X_n$ is said to diverges to infinity almost surely if
$$P(\omega\in\Omega:\lim_{n\to \infty} X_n(\omega)=\infty)=1$$
In other words,
$$\forall K>0, P(\omega\in\Omega:X_n(\omega)>K \,\, as \,\, n\to\infty)=1$$
Now, we use Fatou's lemma to show the claim. Specifically, let $A=(K,\infty]$, we have
$$\lim\inf P(X_n>K)=\lim\inf E[1_A(X_n)]\geq E[\lim\inf 1_A(X_n)]=E[1_A(\lim\inf X_n)]=E[1_A(\infty)]=P(\infty \in A)=1$$
Therefore, we have $\lim P(X_n>K)=1$, which means $X_n\to \infty$ a.s. implies $X_n \to \infty$ in probability.