Let $a,b >0$ be real constants. Empirical observation (as in: asking WolframAlpha) suggests
$$ \lim_{n\to \infty} n \cdot \sum_{k=0}^\infty (\frac{1}{n+ak} - \frac{1}{n+b+ak}) = \frac{b}{a} \tag{$*$}$$
Note that the series in question can be interpreted as the "remainder" / "tail end" of a (conditionally!) convergent alternating series. To see what is going on, confirm that e.g. ($a=3, b=1, n=1000$)
$$1000 \cdot (\frac{1}{1000}-\frac{1}{1001}+\frac{1}{1003}-\frac{1}{1004}+\frac{1}{1006}-\frac{1}{1007} + \dots) \approx \frac{1}{3}$$
Questions:
- Is there a better proof for $(*)$ than my attempt at the bottom of this question?
- What references treat estimates for the asymptotic behaviour of "remainders" like the above? Would there be finer estimates, after subtracting the above error "of order $1/n$", of order $1/n^2$, $1/n^3$, ...?
Context: A student challenged me to (show existence of, and) find
$$\lim_{n\to \infty} n \cdot \int_0^{\frac{\pi}{4}}\tan^n(x) dx$$
Now the easy and well-known recursive formula
$$\int \tan^{n}(x)dx = \frac{1}{n-1}\tan^{n-1}(x) - \int \tan^{n-2}(x) dx$$
gives $$\int_0^{\frac{\pi}{4}}\tan^n(x) dx = \begin{cases} \frac{1}{n-1}-\frac{1}{n-3}+\frac{1}{n-5} - \dots \pm 1\mp \frac{\pi}{4} \text{ if } n \text{ even}\\ \frac{1}{n-1}-\frac{1}{n-3}+\frac{1}{n-5} - \dots \pm \frac{1}{2}\mp \frac{\ln(2)}{2} \text{ if } n \text{ odd}\end{cases}$$
This is a funny case distinction because of course $\frac{\pi}{4} = 1-\frac{1}{3} +\frac{1}{5} \dots $ (Leibniz-Madhava) while $\frac{\ln(2)}{2} = \frac{1}{2}-\frac{1}{4}+\frac{1}{6} -\dots$, so in both cases, the question becomes to estimate the "$1/n$-order" growth of the "tail end" of the series,
$$\lim_{n\to \infty} n \cdot (\frac{1}{n+1}-\frac{1}{n+3}+\frac{1}{n+5} \dots)$$
which by a slight adjustment of $(*)$ (for $b=2, a=4$) is $\dfrac{1}{2}$.
My own proof idea for $(*)$: By a standard estimate for convergent alternating series, for $K$ big enough (e.g. $n+aK > n^2$) we have
$$\sum_{k=0}^\infty (\frac{1}{n+ak} - \frac{1}{n+b+ak}) = \sum_{k=0}^K(\frac{1}{n+ak} - \frac{1}{n+b+ak}) + O \left(\frac{1}{n^2}\right)$$
and now that finite sum can be split up into its positive and negative terms, and we get
$$\sum_{k=0}^K \frac{1}{n+ak} - \sum_{k=0}^K \frac{1}{n+b+ak}\\ =\frac{1}{a} \left(\sum_{k=0}^K \frac{1}{\frac{n}{a}+k} - \sum_{k=0}^K \frac{1}{\frac{n+b}{a}+k} \right)\\ \stackrel{**}\approx \frac{1}{a} \left((\ln (\frac{n}{a}+K) -\ln(\frac{n}{a})) - (\ln(\frac{n+b}{a}+K) - \ln(\frac{n+b}{a})) \right) \\ = \frac{1}{a}\ln(\frac{n+b}{n}) + \frac{1}{a}\ln(\dfrac{\frac{n}{a}+K}{\frac{n+b}{a}+K})$$
Since we can choose $K$ as big as we want, the second term becomes irrelevant. So when we take the limit $n\to \infty$, the whole things behaves like $\frac{n}{a}\ln(\frac{n+b}{n}) = \frac{1}{a}\ln((1+\frac{b}{n})^n)$ which of course goes to $\frac{b}{a}$.
To justify $**$ up to $O(\frac{1}{n^2})$: Taylor expansion says that for big enough $c$ (namely, $\frac{n}{a}+k$ and $\frac{n+b}{a}+k$),
$$\ln(\frac{c+1}{c}) = \frac{1}{c} - \frac{1}{2c^2} + \frac{1}{3c^3} - \dots$$
so that
$$(\ln (\frac{n}{a}+K) -\ln(\frac{n}{a})) - (\ln(\frac{n+b}{a}+K) - \ln(\frac{n+b}{a})) - \left(\sum_{k=0}^K \frac{1}{\frac{n}{a}+k} - \sum_{k=0}^K \frac{1}{\frac{n+b}{a}+k}\right) \\ = -\frac{1}{2} \underbrace{\left( \sum_{k=0}^K \frac{1}{(\frac{n}{a}+k)^2} - \sum_{k=0}^K \frac{1}{(\frac{n+b}{a}+k)^2}\right)}_{<\frac{1}{(\frac{n}{a}+K)^2} \in O(1/n^2)} + \frac{1}{3}\underbrace{\left( \sum_{k=0}^K \frac{1}{(\frac{n}{a}+k)^3} - \sum_{k=0}^K \frac{1}{(\frac{n+b}{a}+k)^3}\right)}_{<\frac{1}{(\frac{n}{a}+K)^3} \in O(1/n^3)} +\dots $$
with the estimates in the bottom again by interpreting these as alternating series.