Can we check it case wise, as follows?
Given
$$n\equiv 6 \pmod 7.$$
We need to check if
$$9d^2 +9n = 3^{3m} =27^md.$$
If this thing happens, then we must have
$$2d^2+2n\equiv (-1)^md \pmod 7.$$
That is
$$2d^2+5 \equiv (-1)^m d\pmod 7,$$
(as $2n\equiv 5 \pmod 7.$) Now, discuss the cases:
$\textbf{Case 1:}$ Suppose $d\equiv 1 \pmod 7$. Then, clearly $2d^2+5 \equiv 0\pmod 7$ which is not congruent to $(-1)^m d \equiv (-1)^m \pmod 7$, for whatever the value of $m$ may be.
$\textbf{Case 2:}$ $d \equiv 2 \pmod 7$. Then,
$2d^2+5 \equiv 6 \pmod 7$ and $(-1)^md \equiv \pm 2 \pmod 7$. Hence both cannot be congruent modulo $7$.
$\textbf{Case 3:}$ $d \equiv 3 \pmod 7$. Then,$2d^2+5 \equiv 2 \pmod 7$ and $(-1)^md \equiv \pm 3\pmod 7$.
$\textbf{Case 4:}$ $d \equiv 4 \pmod 7$. Then, $2d^2+5 \equiv 2 \pmod 7$ and $(-1)^md \equiv \pm 4\pmod 7$.
$\textbf{Case 5:}$ $d \equiv 5 \pmod 7$. Then, $2d^2+5 \equiv 6 \pmod 7$ and $(-1)^md \equiv \pm 5\pmod 7$.
$\textbf{Case 6:}$ $d \equiv 6 \pmod 7$. Then, $2d^2+5 \equiv 0 \pmod 7$ and $(-1)^md \equiv \pm 6\pmod 7$.
$\textbf{Case 7:}$ $d \equiv 0 \pmod 7$. Then, $2d^2+5 \equiv 5 \pmod 7$ and $(-1)^md \equiv \pm 0\pmod 7$.
Hence, in none of the cases above
$$2d^2+5\equiv (-1)^md \pmod 7.$$
Thus, there cannot exist such a $d$ with
$$d+\frac{n}{d} = 3^{3m-2}.$$
elementary-number-theory. $\ \ $ – Bill Dubuque Jul 22 '24 at 19:11