I need to calculate sequence limit of $\left\{a_n\right\}_{n=1}^{\infty}$ where $\left\{a_n\right\}_{n=1}^{\infty} = \left|\sin \left(\pi \cdot \sqrt[3]{n^3+n^2}\right)\right|$
$$ \begin{aligned} & \quad \lim _{n \rightarrow \infty}\left\{a_n\right\}_{n=1}^{\infty}=\lim _{n \rightarrow \infty}\left|\sin \left(\pi \cdot \sqrt[3]{n^3+n^2}\right)\right|= \\ & =\lim _{n \rightarrow \infty}\left|\sin \left(\pi \cdot n \cdot \sqrt[3]{1+\frac{1}{n}}\right)\right| \end{aligned} $$
I then assume that since infinitely large natural $n$ make $1 + \frac{1}{n}$ almost 1, the $\sin$ argument is almost $\pi n$ so the $\sin$ value hovers around $0$. Which is my answer, which is incorrect. Where is the flaw in my logic? Thank you in advance
Try evaluating Limit[|sin(pi*(n^3+n^2)^1/3)|,n->∞]
https://www.wolframalpha.com/input?i2d=true&i=Limit%5B%7Csin%5C%2840%29pi*Power%5B%5C%2840%29Power%5Bn%2C3%5D%2BPower%5Bn%2C2%5D%5C%2841%29%2CDivide%5B1%2C3%5D%5D%5C%2841%29%7C%2Cn-%3E%E2%88%9E%5D
– nickalh Apr 13 '24 at 15:16$$ f(x)=\pi \sqrt[3]{x^3+x^2}-\pi x=\pi \frac{x^2}{\left(x^3+x^2\right)^{\frac{2}{3}}+x \sqrt[3]{x^3+x^2}+x^2} \underset{x \rightarrow+\infty}{\longrightarrow} \frac{\pi}{3} $$
$$ \lim _{x \rightarrow+\infty}|\sin (f(x))|=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}, $$
I have seen Wolfram's take on this, and I don't understand how it correltes to the proposed solution (even though I understand it).
– Alex Silver Apr 13 '24 at 15:19