$x^4+x^3+1$ and $x^2+x+1$ are co-prime in $Z_{2}[x]$, so $[x^4+x^3+1]$ is a unit in $Z_2[x]/(x^2+x+1)$.
Then, $[x^4+x^3+1]$ has an inverse, which I thought I could find by finding $a,b,c,d$ satisfying
$(i)$ $(x^4+x^3+1)(ax+b)+(x^2+x+1)(cx+d)=1$,
where I choose linear factors $ax+b$ and $cx+d$, because any $f(x)$ $\in$ $Z_{2}[x]$ $\Rightarrow$ $f(x)/(x^2+x+1)=(x^2+x+2)g(x)+r(x)$, and $deg$ $r(x)<deg$ $(x^2+x+1)$ $\Rightarrow$ $f(x)$ $\equiv$ $r(x)$ $mod$ $(x^2+x+1)$.
However, when I try to solve $(i)$, I find the system of equations to be inconsistent (unsolvable). Where did I go wrong?
$$\bmod, x^2+x+1!:,\ \dfrac{1}x\equiv \dfrac{(\color{#c00}{x+1}),1}{(\color{#c00}{x+1}),x}\equiv \dfrac{{x+1}}{1}\qquad\qquad\qquad$$
– Bill Dubuque Apr 13 '24 at 02:09