I try to derive the asymptotic expansion$$a_n=\frac{I(n+1)}{I(n)}=\sqrt{n}+\dfrac{1}{2}-\dfrac{1}{8\sqrt{n}}+o\left(\dfrac{1}{\sqrt{n}}\right)\tag{*}$$from
$$ I(n+1)=\frac{1}{\sqrt{2}} n^{n/2}e^{-n/2+\sqrt{n}-1/4}\left(1+\frac{7}{24\sqrt{n}}+{\cal O}\left(\frac{1}{n}\right)\right). \label{eq1}\tag{1} $$
It is given in the end of this answer
$$ I(n+1)=\frac{1}{\sqrt{2}} n^{n/2}e^{-n/2+\sqrt{n}-1/4}\left(1+\frac{7}{24\sqrt{n}}+{\cal O}\left(\frac{1}{n^{3/4}}\right)\right). $$ Now, it is a "simple" matter to conclude from this that $a_n$ has the desired asymptotic expansion.
Edit: In fact the term $\mathcal{O}(n^{-3/4})$ effectively destroys the asymptotic expansion as mercio noted, But in fact we have $$\tag1 I(n+1)=\frac{1}{\sqrt{2}} n^{n/2}e^{-n/2+\sqrt{n}-1/4}\left(1+\frac{7}{24\sqrt{n}}+{\cal O}\left(\frac{1}{n}\right)\right). $$
My working:
$$a_n=\frac{I(n+1)}{I(n)}=\frac{n^{n/2}e^{-n/2+\sqrt{n}}}{(n-1)^{(n-1)/2}e^{-(n-1)/2+\sqrt{n-1}}}\frac{\left(1+\frac{7}{24\sqrt{n}}+{\cal O}\left(\frac{1}{n}\right)\right)}{\left(1+\frac{7}{24\sqrt{n-1}}+{\cal O}\left(\frac{1}{n}\right)\right)}$$ Since $\frac1{\sqrt{n-1}}=\frac1{\sqrt{n}}+{\cal O}\left(\frac{1}{n\sqrt{n}}\right)$, I get $\left(1+\frac{7}{24\sqrt{n-1}}+{\cal O}\left(\frac{1}{n}\right)\right)=\left(1+\frac{7}{24\sqrt{n}}+{\cal O}\left(\frac{1}{n}\right)\right)$, so$$\frac{\left(1+\frac{7}{24\sqrt{n}}+{\cal O}\left(\frac{1}{n}\right)\right)}{\left(1+\frac{7}{24\sqrt{n-1}}+{\cal O}\left(\frac{1}{n}\right)\right)}=\frac{\left(1+\frac{7}{24\sqrt{n}}+{\cal O}\left(\frac{1}{n}\right)\right)}{\left(1+\frac{7}{24\sqrt{n}}+{\cal O}\left(\frac{1}{n}\right)\right)}=1+{\cal O}\left(\frac{1}{n}\right)$$ so $$a_n=\frac{n^{n/2}e^{-n/2+\sqrt{n}}}{(n-1)^{(n-1)/2}e^{-(n-1)/2+\sqrt{n-1}}}\left(1+{\cal O}\left(\frac{1}{n}\right)\right)$$ Since $\sqrt{n}-\sqrt{n-1}=\frac12n^{-1/2}+{\cal O}(n^{-3/2})$, I get $\frac{e^{-n/2+\sqrt{n}}}{e^{-(n-1)/2+\sqrt{n-1}}}=e^{-1/2+\sqrt{n}-\sqrt{n-1}}=e^{-1/2}(1+\frac12n^{-1/2}+{\cal O}(n^{-1}))$
so $$a_n=\frac{n^{n/2}}{(n-1)^{(n-1)/2}}e^{-1/2}\left(1+\frac12n^{-1/2}+{\cal O}(n^{-1})\right)\\=\frac{n^{n/2}}{(n-1)^{n/2}}(n-1)^{1/2}e^{-1/2}\left(1+\frac12n^{-1/2}+{\cal O}(n^{-1})\right)$$ Since $(n-1)^{1/2}=\sqrt{n}(1+{\cal O}(n^{-1}))$, I get $$a_n=\frac{n^{n/2}}{(n-1)^{n/2}}\sqrt{n}e^{-1/2}\left(1+\frac12n^{-1/2}+{\cal O}(n^{-1})\right)\\ =(1-\frac1n)^{-n/2}\sqrt{n}e^{-1/2}\left(1+\frac12n^{-1/2}+{\cal O}(n^{-1})\right)$$ Since $(1-\frac1n)^{-n/2}=e^{-\frac n2\log(1-\frac1n)}=e^{-\frac n2(-n^{-1}+{\cal O}(n^{-2}))}=e^{\frac12+{\cal O}(n^{-1})}=e^{\frac12}+{\cal O}(n^{-1})$, then I get $$a_n=\sqrt{n}\left(1+\frac12n^{-1/2}+{\cal O}(n^{-1})\right)=\sqrt{n}+\frac12+{\cal O}(n^{-1/2})$$
but this is less precise than $(\text*)$.
I doubt that I cannot get the $-\frac{1}{8\sqrt{n}}$ term from \eqref{eq1} because ${\cal O}(\frac1n)$ appear in \eqref{eq1}.
The $\sqrt{n}$ term in $(\text*)$, when multiplied by ${\cal O}(\frac1n)$, becomes ${\cal O}(\frac1{\sqrt{n}})$ and absorbs the term $-\frac1{8\sqrt{n}}$.
so I need to find one more term in \eqref{eq1}, change ${\cal O}(\frac1{n})$ to $o(\frac1{n})$ in order to get the $-\frac{1}{8\sqrt{n}}$ term, is this correct?