0

Assume that $Q$ is an Orthogonal Tensor and $v, w$ are two vectors. Is it true that:

$$ (Q · v) × (Q · w) = (\det Q)Q · (v × w) $$

I got a little bit stuck by the proof with Levi-Civita Symbols:

\begin{equation} \begin{aligned} ({Q} \cdot {v}) \times ({Q} \cdot {w}) &=(Q_{ij}v^je_i)\times(Q_{mn}w^ne_m) \\&=\varepsilon_{pqo}(Q_{ij}v^je_i)^p(Q_{mn}w^ne_m)^q \\&=\varepsilon_{pqo}Q_{pj}v^jQ_{qn}w^ne_o \\(\det {Q}) {Q} \cdot ({v} \times {w}) &=(\det {Q}) {Q}\cdot(\varepsilon_{ijk}v^iw^je_k) \\&=Q_{mn}\varepsilon_{ijn}v^iw^je_m \end{aligned} \end{equation}

but nothing else that I could do ;)

1 Answers1

0

$\def\qty#1{\left( #1 \right)}$ $\def\R{\mathbb{R}}$

Start with the definition of the determinant of a matrix $\def\R{\mathbb{R}}$ $C \in \R^{3 \times 3}$: $$ \det C := \epsilon^{ijk} {C^1}_i {C^2}_i {C^3}_i $$ where, for example, ${C^1}_i$ is element $i$ of the first row of the matrix. If $C$ is the product between two matrices $A,B$ then, since ${C^i}_j={A^i}_k{B^k}_j$, we can rewrite the formula for the determinant as, $$ \det C = \epsilon^{ijk} {A^1}_p{B^p}_i {A^2}_q{B^q}_j {A^3}_r{B^r}_k \tag{1} \label{1} $$ It is also the case that, $$ \epsilon^{ijk} {B^p}_i {B^q}_j {B^r}_k =\det B \; e^{pqr} $$ and so, $$ \det C = \det B \; e^{pqr}{A^1}_p {A^2}_q {A^3}_r = \det B \; {A^1}_p \qty{e^{pqr} {A^2}_q {A^3}_r} = \det B \; {A^1}_p \qty{A^2 \times A^3}^p \tag{2} \label{2} $$ We can rewrite ($\ref{1}$) as, $$ \det C = \epsilon^{ijk} {A^1}_p{B^p}_i {A^2}_q{B^q}_i {A^3}_r{B^r}_i = \qty{{A^1}_p{B^p}_i} \qty{\epsilon^{ijk}{A^2}_q{B^q}_j {A^3}_r{B^r}_k} = \qty{{A^1}_p{B^p}_i} \qty{C^2 \times C^3}^i $$ Now set $B=Q^T$ the transpose of an orthogonal tensor $Q$ which has the property, $$ \qty{a_p {Q_i}^p} \qty{{Q^i}_r b^r} = a_p \qty{{Q_i}^p {Q^i}_r} b^r = a_p \delta^p_r b^r = a_p b^p $$ (${Q_i}^p {Q^i}_r={\qty{Q^TQ}^p}_r={I^p}_r=\delta^p_r$). We can use this property to rewrite, $$ {A^1}_i \qty{A^2 \times A^3}^i = \qty{{A^1}_p {Q_i}^p} \qty{{Q^i}_r \qty{A^2 \times A^3}^r} \tag{3} \label{3} $$ Combining ($\ref{1}$), ($\ref{2}$) and ($\ref{3}$), $$ \det Q^T \; \qty{{A^1}_p {Q_i}^p} \qty{{Q^i}_r \qty{A^2 \times A^3}^r} = \qty{{A^1}_p{Q_i}^p} \qty{C^2 \times C^3}^i $$ So we must have, $$ \qty{C^2 \times C^3}^i = \det Q \qty{{Q^i}_r \qty{A^2 \times A^3}^r} $$ ($\det Q^T=\det Q$). If ${A^2}_i=v_i$ and ${A^3}_i=w_i$ then ${C^2}_i={A^2}_p {Q_i}^p= v_p {Q_i}^p = (Qv)_i$ and ${C^3}_i={A^3}_p {Q_i}^p= w_p {Q_i}^p = (Qw)_i$. So the last equation is equivalent to, $$ \qty{Qv}\times\qty{Qw}=\det Q \; \qty{Q \qty{v \times w}} $$

Ted Black
  • 1,639