$$\ln(1+x) = \sum_{m=1}^ \infty \frac{(-1)^{m+1} x^m}{ m} \ \ \ \ \text{ with radius of convergence = 1 }$$
$$\lim\limits_{n\to\infty}\frac{1}{n} \sum\limits_{k=1}^n k\ln \left(\frac{n^2+(k-1)^2}{n^2+k^2}\right) = \lim\limits_{n \to \infty }\frac{1}{n} \sum\limits_{k=1}^n k \ln \left( 1 + \frac{1-2k}{n^2+k^2}\right)$$
$$= \lim\limits_{n \to \infty }\frac{1}{n} \sum\limits_{k=1}^n k \sum_{m=1}^ \infty \frac{(-1)^{m+1} \left( \frac{1-2k}{n^2+k^2}\right)^m}{ m} $$
$$\left| \frac{1}{n} \sum\limits_{k=1}^n k \sum_{m=1}^ \infty \frac{(-1)^{m+1} \left( \frac{1-2k}{n^2+k^2}\right)^m}{ m} - \frac{1}{n} \sum\limits_{k=1}^n k \left( 1 + \frac{1-2k}{n^2+k^2}\right)\right|$$
$$= \left|\frac{1}{n} \sum\limits_{k=1}^n k \sum_{m=2}^ \infty \frac{(-1)^{m+1} \left( \frac{1-2k}{n^2+k^2}\right)^m}{ m}\right|< \sum\limits_{k=1}^n \sum_{m=2}^ \infty {\left( \frac{2n+1}{n^2}\right)^m} $$
$$= n\left(\frac{2n+1}{n^2}\right)^2\cdot \frac{1}{1-\frac{2n+1}{n^2}} \ \ \ \ \ \ \text{Which goes to $0$ as $n $ goes to $\infty$}$$
By squeeze theorem $\displaystyle \lim\limits_{n \to \infty }\frac{1}{n} \sum\limits_{k=1}^n k \ln \left( 1 + \frac{1-2k}{n^2+k^2}\right)=\lim\limits_{n \to \infty }\frac{1}{n} \sum\limits_{k=1}^n k \left( \frac{1-2k}{n^2+k^2}\right) =\lim\limits_{n \to \infty }\frac{1}{n} \sum\limits_{k=1}^n k \left( \frac{-2k}{n^2+k^2}\right) $
$$\lim\limits_{n \to \infty }\frac{1}{n} \sum\limits_{k=1}^n k \left( \frac{-2k}{n^2+k^2}\right) = -2\lim\limits_{n \to \infty }\frac{1}{n} \sum\limits_{k=1}^n \frac{\frac{k^2}{n^2}}{1+\frac{k^2}{n^2}}$$
$$=-2\int_0^1 \frac{x^2}{1+x^2}dx= \frac{\pi}{2}-2$$