Statement: Let $ X $ be a $B^*$-space over the complex field $ \mathbb{C} $. We aim to prove that $ X $ is strictly convex(i.e.for any $ x, y \in X $ where $ x \neq y $ and $ \|x\|, \|y\| = 1 $, implies $ \| \frac{x+y}{2} \| < 1 $), if and only if for any $ x, y \in X $ with $ x \neq y $ and $ \|x\| = \|y\| = 1 $, there exists $ \lambda \in \mathbb{C} $ such that $\| \lambda x + (1 - \lambda)y \| < 1 $.
This problem simplifies in the real case by examining the possible values of $ \lambda $, but it becomes more intricate when considering the complex case. Any insights or assistance would be greatly appreciated.