Given (R,X) a multivariate discrete random variable with joint pdf:
$f_{R,X}(r,x)=$ ${x-1}\choose {r-1}$ $ \cdot a^{r}(1-a)^{x-r} \cdot $ ${n}\choose {r} $ $ b^{r}(1-b)^{n-r}$
with support $x=r,r+1,r+2,...$ and $r=0,1,2, ... n$.
The distribution has three parameters: $n \in N^{+}, $ $ a \in (0;1),$ $b \in (0;1). $
Compute $Cov(X,R)$
$Cov(X,R)=E(X\cdot R)-E(X)\cdot E(R) $
First I transformed ${x-1}\choose {r-1}$ $=\frac{(x-1)!}{(x-r)!(r-1)!}=\frac{r\cdot(x)!}{(x-r)!(r)!\cdot x}=\frac{r}{x}\cdot\frac{x!}{(x-r)!\cdot r!}$.
$ E(X\cdot R)=\sum_{r=0}^{n}\sum_{x=r}^{\infty}x\cdot r\cdot\frac{r}{x}\cdot\frac{x!}{(x-r)!\cdot r!}a^{r}(1-a)^{x-r} \cdot $ ${n}\choose {r}$ $ b^{r}(1-b)^{n-r}$
What can I do then?