Let's cheat our way through
$\begin{aligned}
I_n=\displaystyle\int_0^1x^n\sqrt{1-x^2}\,\mathrm dx\overset{(\ast)^1}{=}\int_0^{\pi/2}\sin^n u\cos^2 u\,\mathrm du&\overset{(\ast)^2}{=}\frac{1}{2}\mathfrak B\left(\frac{n+1}{2},\frac{3}{2}\right)\\
&\overset{(\ast)^3}{=}\frac{1}{2}\dfrac{\Gamma(\frac{n+1}{2})\Gamma(\frac{3}{2})}{\Gamma(\frac{n+4}{2})}\\
&=\frac{1}{2}\dfrac{\Gamma(\frac{n-1}{2}+1)\Gamma(\frac{3}{2})}{\Gamma(\frac{n+2}{2}+1)}\\
&\overset{(\ast)^4}{=}\frac{1}{2}\dfrac{\frac{n-1}{2}\Gamma(\frac{n-1}{2})\Gamma(\frac{3}{2})}{\frac{n+2}{2}\Gamma(\frac{n+2}{2})}\\
&=\frac{n-1}{n+2}\frac{1}{2}\dfrac{\Gamma(\frac{n-1}{2})\Gamma(\frac{3}{2})}{\Gamma(\frac{n+2}{2})}\\
&=\frac{n-1}{n+2}\mathfrak B\left(\frac{n-1}{2},\frac{3}{2}\right)\\
&=\frac{n-1}{n+2}\int_0^{\pi/2}\sin^{n-2} u\cos^2 u\,\mathrm du\\
&=\frac{n-1}{n+2}\int_0^{1}x^{n-2} \sqrt{1-x^2}\,\mathrm dx=\frac{n-1}{n+2}I_{n-2}
\end{aligned}$
Where $\mathfrak B(\cdot,\cdot)$ is the beta function, $\Gamma(\cdot)$ is Euler's gamma function and
$$\begin{aligned}
&(\ast)^1:x=\sin u;\ \mathrm dx=\cos u\,\mathrm du\\
&(\ast)^2:\mathfrak B(n,m)\equiv 2\int_0^{\pi/2}(\sin x)^{2n-1}(\cos x)^{2m-1}\,\mathrm dx\\
&(\ast)^3:\mathfrak B(n,m)\equiv\frac{\Gamma(n)\Gamma(m)}{\Gamma(n+m)}\\
&(\ast)^4:\Gamma(z+1)=z\Gamma(z)
\end{aligned}$$