Just for curiosity I want to represent $x^n$ as a sum of $P_k:= (x)(x-1)\dots(x-k+1)$.
Since $x=P_1,\ xP_n= P_{n+1} +nP_n$, this proves that it is possible for any $x^n$ to be represented as a sum of $P_k:= (x)(x-1)\dots(x-k+1)$ where $1\le k \le n$, $ \ n \in \mathbb{N}$. We have $$x^n = \sum\limits_{k=1}^n C_{(n,k)} P_k$$ where $C_{(n,k)}$ is just some constant that depends on $n, \ k$, This also give us a way to calculate the first $C_{(n,k)}$ for $1\le n\le 6$.
$$x=P_1$$ $$x^2 = P_1+ P_2 $$ $$x^3 = P_1 + 3P_2 +P_3 $$ $$x^4=P_1 +7 P_2 + 6P_3 +P_4$$ $$x^5=P_1+15P_2 +25P_3+10P_4 +P_5$$ $$x^6=P_1+31P_2 +90P_3 +65P_4+15P_5+ P_6$$
The question is How to represent $C_{(n,k)}$ in a "nice" closed from? I expected at first that $C_{(n,k)}$ have some relation to the binomial coefficients $x, \ x^2, \ x^3$ I believed that such simple relation could be found, but after I calculated $x^4, \ x^5, \ x^6$ it turns out that $C_{(n,k)}$ is more complicated that I initially thought .
After some thinking representing $x^n$ as a sum of $P_k$ can be useful ,For example:
$\sum\limits_{r=1}^m r^n = \sum\limits_{r=1}^m\sum\limits_{k=1}^n C_{(n,k)} P_k(r)$ where $P_k(r)=(r)(r-1)\dots(r-k+1)= k!\dbinom{r}{k} $
$$ \sum\limits_{r=1}^m \sum\limits_{k=1}^n C_{(n,k)} P_k(r)= \sum\limits_{k=1}^n C_{(n,k)} \sum\limits_{r=1}^m P_k(r)=\sum\limits_{k=1}^n C_{(n,k)} \sum\limits_{r=1}^m P_k(r) $$ $$= \sum\limits_{k=1}^n C_{(n,k)} \sum\limits_{r=1}^m k!\dbinom{r}{k}$$
$$ \sum\limits_{r=1}^m\dbinom{r}{k} =\dbinom{m+1}{k+1} $$
So $$\sum\limits_{r=1}^m r^n =\sum\limits_{k=1}^n k!C_{(n,k)} \dbinom{m+1}{k+1}$$
This gives us a general formula for $\sum\limits_{r=1}^m r^n $.
Another example is evaluating $\sum\limits_{r=1}^\infty\frac{r^n x^r}{r!} $ where $n$ is a natural number.
$$\sum\limits_{r=1}^\infty\frac{r^n x^r}{r!} = \sum\limits_{r=1}^\infty\frac{\sum\limits_{k=1}^n C_{(n,k)} P_k(r) }{r!}x^r = \sum\limits_{k=1}^n C_{(n,k)} \sum\limits_{r=1}^\infty \frac{P_k(r)x^r}{r!} $$ $$=\sum\limits_{k=1}^n C_{(n,k)} \sum\limits_{r=1}^\infty \frac{x^r}{(r-k)!}=e^x\sum\limits_{k=1}^n C_{(n,k)} x^k $$