I am currently writing a small paper regarding the analogy between Fourier analysis and linear algebra for my mathematics class. Unfortunately, I am stuck at proving that $\mathrm{e}^{2\pi\mathrm{t}\omega t}$ forms an orthonormal basis in the $L^2(\mathbb{R})$ for all $\omega\in\mathbb{R}$.
In my paper I already showed that $\mathrm{e}^{2\pi\mathrm{i} n/T}\in L^2([-T/2;T/2])$ forms an orthonormal basis for all $n\in\mathbb{Z}$ such that $$ \langle \mathrm{e}^{2\pi\mathrm{i} n/T},\mathrm{e}^{2\pi\mathrm{i} m/T}\rangle=\frac{1}{T}\int_{-T/2}^{T/2}\mathrm{e}^{2\pi\mathrm{i} n/T}\overline{\mathrm{e}^{2\pi\mathrm{i} m/T}}\mathrm{d}t=\delta_{nm}. $$ Therefore, the Fourier series of a function $f(t)\in L^2([-T/2;T/2])$ can be interpreted as an orthogonal projection of $f$ onto the individual basis functions with $$ f(t)=\sum_{k=-\infty}^{\infty}\underbrace{\left\langle f(t),\mathrm{e}^{2\pi\mathrm{i} kt/T}\right\rangle}_{=c_k} \mathrm{e}^{2\pi\mathrm{i} kt/T} $$ When we extend the Fourier series to a non-periodic function $f(t)\in L^2(\mathbb{R})$, we get the Fourier transform and the inverse Fourier transform give by $$ f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{f}(\omega)\mathrm{e}^{2\pi\mathrm{i} \omega t}\mathrm{d}\omega, \quad \hat{f}(\omega)=\int_{-\infty}^{\infty}f(t)\mathrm{e}^{-2\pi\mathrm{i}\omega t}\mathrm{d}t $$ In order for the Fourier transform to work I would assume that $\mathrm{e}^{2\pi\mathrm{t}\omega t}$ also has to form an orthonormal basis for each $\omega\in\mathbb{R}$ in the $L^2(\mathbb{R})$. But can we prove something like $$ \forall \omega_1,\omega_2\in\mathbb{R}\colon \langle \mathrm{e}^{2\pi\mathrm{i} \omega_1},\mathrm{e}^{2\pi\mathrm{i} \omega_2}\rangle=\delta_{\omega_1\omega_2} $$ And if so, how could I prove it? Thanks in advance.
For something that's actually a countable basis of L^2(R), possibly the Fourier series basises for L^2[-T/2, T/2] for all T rational might work, although they won't be orthogonal for the reasons given above.
– Chill2Macht Jan 05 '25 at 17:29