$$f(x)=\frac{x}{2}-\frac{\sin(200\pi x)}{400\pi}$$
Let $t=200\pi x$ and $y=400\pi f(x)$ to face
$$y=t-\sin(t) \quad \text{with}\quad 0 \leq t \leq 2\pi \quad \text{and}\quad 0 \leq y \leq 2\pi$$ Expanding as a Taylor series
$$y=\pi+2(t-\pi)+\sum_{n=1}^\infty \frac {(-1)^n}{(2n+1)!} (t-\pi )^{2 n+1}$$
Using power series reversion, then
$$t=\pi+\sum_{n=0}^\infty a_n\, (y-\pi)^{2n+1}$$ where the first coefficients are
$$\left\{\frac{1}{2},\frac{1}{96},\frac{1}{1920},
\frac{43}{1290240},\frac{223}{92897280},
\frac{60623}{32699842560 0},\cdots\right\}$$
Their numerators and denominators form respectively sequences $A362407$ and $A362406$ in $OEIS$.
To give an idea of the accuracy, consider the truncated series
$$S_p=\pi+2(t-\pi)+\sum_{n=1}^p \frac {(-1)^n}{(2n+1)!} (t-\pi )^{2 n+1}$$ and the corresponding infinite norm
$$\Phi_p=\int_0^{2pi} \Big(y-S_p\Big)^2\, dt$$
$$\left(
\begin{array}{cc}
p & \Phi_p \\
4 & 1.3232\times 10^{-5} \\
5 & 4.6409\times 10^{-8} \\
6 & 9.0993\times 10^{-11} \\
7 & 1.0753\times 10^{-13} \\
8 & 4.0580\times 10^{-17} \\
9 & 2.0408\times 10^{-20} \\
\end{array}
\right)$$