I have the matricial differential equation:
$$\frac{\text{d}}{\text{d}t}\vec{x}(t)=A \cdot \vec{x}(t)$$
where:
$$\vec{x}(t) \in \mathbb{R}^3, \quad A=\begin{pmatrix} a & 0 & b \newline 0 & c & 0 \newline d & 0 & a \end{pmatrix}, \quad a,b,c,d \in \mathbb{R}$$
I need to find $a,b,c,d \in \mathbb{R}$ such that:
$$\lim_{t \to +\infty} \vec{x}(t)=\vec{0}$$
for every initial condition $\vec{x}(0) \in \mathbb{R}^3$.
The very short solution provided by the text is that the eigenvalues of the matrix $A$ must have negative real part. I can't undetstand why.
What I have done so far:
I know that the solution can be written in the form:
$$\vec{x}(t)=e^{tA} \cdot \vec{x}(0)$$
and I can easily find the eigenvalues of $A$:
$$c, \quad a-\sqrt{bd}, \quad a+\sqrt{bd}$$
If the real part must be negative then we must have:
- $c<0$;
- $a<0 \quad \text{if} \quad bd<0$;
- $a<-\sqrt{bd} \quad \text{if} \quad bd>0$.