Here is my answer.
There is my usual
excruciating detail
since, as always,
I wrote nothing down on paper
but directly entered this
into MacDown,
my MathJax editor of choice.
Euler's formula for general factorial is
$z!
=\lim_{n \to \infty} \dfrac{n!n^z}{\prod_{k=1}^n (z+k)}
$.
Wallis' product is
$\dfrac{\pi}{2}
=\prod_{k=1}^{\infty} \dfrac{4k^2}{4k^2-1}
$
I first tried to put
Wallis' formula
into a form
that I hoped could match with
Euler's formula
for $(-1/2)!$.
$\begin{array}\\
\dfrac{\pi}{2}
&=\prod_{k=1}^{\infty} \dfrac{4k^2}{4k^2-1}\\
&=\prod_{k=1}^{\infty} \dfrac{2k}{2k-1}\dfrac{2k}{2k+1}\\
&=\lim_{n \to \infty}\prod_{k=1}^{n} \dfrac{2k}{2k-1}\dfrac{2k}{2k+1}\\
&=\lim_{n \to \infty}\prod_{k=1}^{n} \dfrac{2k}{2k-1}\prod_{k=1}^{n}\dfrac{2k}{2k+1}\\
\end{array}
$
I then plugged $-1/2$
into Euler's formula,
manipulated it a bit,
squared that,
split and regrouped terms,
did some index fiddling,
and, shazam, it matched!
$\begin{array}\\
-\dfrac12!
&=\lim_{n \to \infty} \dfrac{n!n^{-1/2}}{\prod_{k=1}^n (-1/2+k)}\\
&=\lim_{n \to \infty} \dfrac{n!n^{-1/2}2^n}{\prod_{k=1}^n (-1+2k)}\\
&=\lim_{n \to \infty} \dfrac{\prod_{k=1}^n (2k)n^{-1/2}}{\prod_{k=1}^n (-1+2k)}\\
\text{so}\\
(-\dfrac12!)^2
&=\lim_{n \to \infty} \dfrac{\prod_{k=1}^n (2k)^2}{n\prod_{k=1}^n (-1+2k)^2}\\
&=\lim_{n \to \infty} \dfrac{\prod_{k=1}^n (2k)}{n\prod_{k=1}^n (-1+2k)} \dfrac{\prod_{k=1}^n (2k)}{\prod_{k=1}^n (-1+2k)}\\
&=\lim_{n \to \infty} \dfrac1{n}\prod_{k=1}^n\dfrac{ (2k)}{(2k-1)} \prod_{k=1}^n\dfrac{ (2k)}{(2k-1)}\\
&=\lim_{n \to \infty} \dfrac1{n}\prod_{k=1}^n\dfrac{ (2k)}{(2k-1)} 2\prod_{k=2}^n\dfrac{ (2k)}{(2k-1)}\\
&=\lim_{n \to \infty} \dfrac{2}{n}\prod_{k=1}^n\dfrac{ (2k)}{(2k-1)} \prod_{k=1}^{n-1}\dfrac{ (2(k+1))}{2k+1}\\
&=\lim_{n \to \infty} \dfrac{2}{n}\prod_{k=1}^n\dfrac{ (2k)}{(2k-1)} \dfrac{ \prod_{k=1}^{n-1}(2(k+1))}{\prod_{k=1}^{n-1}(2k+1)}\\
&=\lim_{n \to \infty} \dfrac{2(2n+1)}{n}\prod_{k=1}^n\dfrac{ (2k)}{(2k-1)} \dfrac{ \prod_{k=1}^{n-1}(2(k+1))}{\prod_{k=1}^{n}(2k+1)}\\
&=\lim_{n \to \infty} \dfrac{2(2n+1)}{n}\prod_{k=1}^n\dfrac{ (2k)}{(2k-1)} \dfrac{ \prod_{k=2}^{n}(2k)}{\prod_{k=1}^{n}(2k+1)}\\
&=\lim_{n \to \infty} \dfrac{(2n+1)}{n}\prod_{k=1}^n\dfrac{ (2k)}{(2k-1)} \dfrac{ \prod_{k=1}^{n}(2k)}{\prod_{k=1}^{n}(2k+1)}\\
&=\lim_{n \to \infty} \dfrac{(2n+1)}{n}\prod_{k=1}^n\dfrac{ (2k)}{(2k-1)} \prod_{k=1}^{n}\dfrac{(2k)}{(2k+1)}\\
&=2(\dfrac{\pi}{2})\\
&=\pi\\
\end{array}
$