Let $\{e_i\}$ be a Hilbert basis for a Hilbert space $H$ over $\mathbb{C}$ and $\{\lambda_i\}$ be a sequence of complex numbers tending to zero. Suppose that $A\in\mathcal{B}(H)$ such that $Ae_i=\lambda_ie_i$. I am trying to show that $A$ is a compact operator. I know that alternatively I could try to show that if $A$ is not a compact operator, then the sequence $\{\lambda_i\}$ doesn't converge to zero, but that seems a bit too hard since there are quite a few cases for $A$ and quite a possibilities how a sequence doesn't converge to a limit.
In any case, we'd like to show that any bounded sequence is mapped to a sequence with a convergent subsequence. And this already is a problem for me, since the only results I now that guarantee the existence of a converging subsequence are those of the like of Heine-Borel theorem. But, to be constructive, I'm going to write everything that I think that we know about our situation.
Let $\{v_i\}$ is a bounded sequence in $H$. Then $v_i = \sum_{j}c_{ij}e_j$ for complex scalars $c_{ij}$ and $||v_i|| \leq M$ for all $i$ for some finite number $M$. By continuity and linearity of $A$,
$$A(v_i) = \sum_{j}c_{ij}A(e_j) = \sum_{j}c_{ij}\lambda_je_j$$
For all $j$ large enough, $|\lambda_j| < \epsilon$ for a given $\epsilon > 0$ and $\{\lambda_j\}$s are bounded by some $C\geq 0$. Therefore,
$$||A(v_i)||^2 = \sum_{j}|c_{ij}\lambda_j|^2 < C^2\sum_{j=1}^{J}|c_{ij}| + \epsilon\sum_{j=J+1}^\infty |c_{ij}|^2$$
for a suitable large index $J$.
We also know that
$$\sum_{j}|c_{ij}|^2 < \infty$$
for all $j$, meaning that tails of the sum $\sum_{j}|c_{ij}|^2$ converge to zero.
But how do we go about showing that $\{A(v_i)\}$s converge along some subsequence?