I dont understand following steps of a solution where I need to find the Normalization constant $A(E,P,N)$ . The normalization is given by: $$ \int \rho(\vec x)d\vec x = 1 $$ where $d \vec x = C_N d^Np d^Nq$ and $C_N = \frac{1}{N!} \frac{1}{(2 \pi \hbar)^N}$
Constant energy E and constant momentum is given by: $$ \sum_{i=1}^{N} \frac{p_i^2}{2m} = E \qquad \sum_{i=1}^{N} p_i = P $$ The microcanonical equilibrium density is: $$ \rho (\vec x) = A(E,P,N) \space \delta(\sum_{i=1}^{N} \frac{p_i^2}{2m}-E) \space \delta (\sum_{i=1}^{N} p_i - P) $$ With $d^Npd^Nq = \prod_{i=1}^{N}dp_i dq_i$ the normalization factor is given by:
$$ 1 = A C_N \int \prod_{i=1}^{N}dp_i dq_i \delta(\sum_{i=1}^{N} \frac{p_i^2}{2m}-E) \space \delta (\sum_{i=1}^{N} p_i - P) \\ = A C_N V^N \int \prod_{i=1}^{N}d\tilde p_i \delta(\sum_{i=1}^{N} \frac{\tilde p_i^2}{2m}-\tilde E) \space \delta (\sum_{i=1}^{N} \tilde p_i)\\ = A C_N V^N (2m)^\frac{N}{2} \tilde E^{\frac{N}{2}-1} \int \prod_{i=1}^{N}dz_i \delta(\sum_{i=1}^{N} z_i^2-1) \space \delta (\sum_{i=1}^{N} z_i)\\ $$
where
$$ \tilde p_i = p_i - \frac{P}{N}, \quad \tilde E = E - \frac{P}{2mN} > 0, \quad z_i = \frac{\tilde p_i}{\sqrt{2m \tilde E}} $$
I dont understant the last delta function $\delta (\sum_{i=1}^{N} z_i)$. It should be $\delta (\sum_{i=1}^{N} \sqrt{2m \tilde E} \space z_i)$ , no?
\leftand\right. – joriki Jan 14 '24 at 00:47