To compute the value of the sum
$$S(a) = \sum_{n=1}^{\infty} \frac{\zeta(2n)}{n \cdot a^n}$$
Expand and rearrange to obtain
$$S(a) = \frac{\zeta(2)}{1\cdot a} + \frac{\zeta(4)}{2 \cdot a^2} + \frac{\zeta(6)}{ 3 \cdot a^3}.....$$
Note that
$$\zeta(2n) = \sum_{k=0}^{\infty} \frac{1}{(k+1)^{2n}}$$
Recall the Taylor Series expansion of $\ln(1-x)$
$$\ln(1-x) = -x -\frac{x^2}{2} -\frac{x^3}{3}.....$$
This implies that
$$-\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3}.... = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
Thus, using the above two identities, we can rewrite $S(a)$ as:
$$S(a) = \sum_{n=0}^{\infty} -\ln(1-\frac{1}{a(n+1)^2})$$
Note that
$$-\ln(1-\frac{1}{a(n+1)^2}) = \int_0^{\frac{1}{\sqrt{a}}} \frac{2a}{(n+1)^2-a^2} da$$
This means that
$$S(a) = \sum_{n=0}^{\infty} \int_0^{\frac{1}{\sqrt{a}}} \frac{2a}{(n+1)^2-a^2} da$$
Swapping the integral and summation signs, we get:
$$S(a) = \int_0^{\frac{1}{\sqrt{a}}} \sum_{n=0}^{\infty} \frac{2a}{(n+1)^2-a^2} da$$
Also, we have:
$$\sum_{n=0}^{\infty} \frac{2a}{(n+1)^2-a^2} = \frac{1-\pi a \cdot \cot(\pi a)}{a}$$
Thus,
$$S(a) = \int_0^{\frac{1}{\sqrt{a}}} \frac{1-\pi a \cdot \cot(\pi a)}{a} da$$
$$S(a) = \ln(\frac{1}{\sqrt{a}}) - \ln(\sin(\frac{\pi}{\sqrt{a}})) - \ln(\frac{1}{\pi})$$
We finally obtain:
$$S(a) = \ln(\frac{\pi}{ \sqrt{a}} \cdot \csc(\frac{\pi}{ \sqrt{a}}))$$
Substituting $a=4$, we get the desired result:
$$S(4) = \ln(\frac{\pi}{2})$$
P.S. : We can also compute the sum
$$S_1(a) = \sum_{n=1}^{\infty} \frac{\zeta(2n)}{a^{n}}$$
By your earlier observation that:
$$S'(a) = -\frac{1}{a} \cdot \sum_{n=1}^{\infty} \frac{\zeta(2n)}{a^n} = \frac{d}{da}\ln(\frac{\pi}{ \sqrt{a}} \cdot \csc(\frac{\pi}{ \sqrt{a}}))$$
By observing that the sum in LHS is $S_1(a)$ multiplied by $\frac{-1}{a}$, we obtain:
$$S_1(a) = \sum_{n=1}^{\infty} \frac{\zeta(2n)}{a^n} = \frac{1}{2} \cdot \left(\csc(\frac{\pi}{\sqrt{x}}) - \frac{\pi}{\sqrt{x}}\cdot \ln(\frac{\pi}{\sqrt{x}}) \cdot \cot(\frac{\pi}{\sqrt{x}}\right) $$