Is the transformation $f\mapsto T(f):=\mathcal{F}^{-1}(m(\xi)\widehat{f}(\xi))$ always translation-invariant?
My attempt: (with $f$ a Schwartz function) \begin{align} (T (\tau_hf))(x)&=\mathcal{F}^{-1}(m(\xi)\widehat{\tau_hf}(\xi))(x))\\ &=\int_{\mathbb{R}}\mathrm{e}^{ix\xi}m(\xi)\widehat{\tau_h f}(\xi)\,d\xi\\ &=\int_{\mathbb{R}}\mathrm{e}^{ix\xi}m(\xi)\mathrm{e}^{ih\xi}\widehat{f}(\xi)\,d\xi\\ \end{align} and \begin{align} (\tau_h (Tf))(x)&=\tau_h(\mathcal{F}^{-1}(m(\xi)\widehat{f}(\xi))(x)\\ &=\mathcal{F}^{-1}(m(\xi)\widehat{f}(\xi))(x+h)\\ &=\int_{\mathbb{R}}\mathrm{e}^{i(x+h)\xi}m(\xi)\widehat{f}(\xi)\,d\xi\\ &=\int_{\mathbb{R}}\mathrm{e}^{ix\xi}m(\xi)\mathrm{e}^{ih\xi}\widehat{f}(\xi)\,d\xi \end{align}
Therefore, $\tau_h T=T\tau_h$?, for any $m(\xi)\in L^{\infty}(\mathbb{R}))$ Or does the function $m(\xi)$ need some additional assumptions?