Let $M$ be a function from $[a ; b]$ to $M_{2n+1}(\mathbb{R})$, of class $\mathcal{C}^1$ such that: $$\forall x \in[a ; b], { }^t M(x) \cdot M(x) = I_n. $$ I want to show that: $$\forall x \in [a ; b], M^{\prime}(x) \notin GL_{2n+1}(\mathbb{R}). $$ Starting by taking the derivative, I get:
$$\forall x \in [a ; b], { }^tM(x)M^{\prime} (x)+ { }^tM^{\prime}(x)M(x)=0. $$
Any help!