If $X$ and $Y$ have same distributions and $X \leq Y$ almost surely, does $X=Y$ almost surely? Here is a specific problem I met.
Assume $f(\omega)$ be a real-valued random variable which is defined on a metric dynamical system $(\mathcal{\Omega},\mathcal{F},\theta_{t},\mathbb{P})$ and $f(\theta_{t}\omega)\leq f(\omega)$ $\mathbb{P}$-a.s. Can we claim that $f(\theta_{t}\omega)=f(\omega)$ $\mathbb{P}$-a.s. ?
Recall that a metric dynamical system $(\mathcal{\Omega},\mathcal{F},\theta_{t},\mathbb{P})$ means that $(\mathcal{\Omega},\mathcal{F},\mathbb{P})$ is a probability space. $\theta_t\circ\theta_s=\theta_{t+s}$, $(t,\omega)\mapsto\theta_{t}\omega$ is measurable. And $\mathbb{P}$ is measure-preserving, that is, $\mathbb{P}(B)=\mathbb{P}(\theta_{t}B)$ for all $B\in\mathcal{F}$.
Here is my option. Clearly, $f(\theta_{t}\omega)$ and $f(\omega)$ has same distribution since $\mathbb{P}$ is measure-preserving. Thus we have $\mathbb{P}\{\omega:f(\theta_{t}\omega)\in[0,f(\theta_{t}\omega)]\}=\mathbb{P}\{\omega:f(\omega)\in[0,f(\theta_{t}\omega)]\}$.
Since $\mathbb{P}\{\omega:f(\theta_{t}\omega)\in[0,f(\theta_{t}\omega)]\}=1$, we have $\mathbb{P}\{\omega:f(\omega)\in[0,f(\theta_{t}\omega)]\}=1$, that is $f(\omega)\leq f(\theta_{t}\omega)$ $\mathbb{P}$-a.s.
Similarly, $\mathbb{P}\{\omega:f(\omega)\in[0,f(\omega)]\}=\mathbb{P}\{\omega:f(\theta_t\omega)\in[0,f(\omega)]\}$. And $\mathbb{P}\{\omega:f(\omega)\in[0,f(\omega)]\}=1$. Hence $\mathbb{P}\{\omega:f(\theta_t\omega)\in[0,f(\omega)]\}=1$, that is $f(\theta_{t}\omega)\leq f(\omega)$ $\mathbb{P}$-a.s.
However, we don't use the assumption $f(\theta_{t}\omega)\leq f(\omega)$ almost surely, we directly follow the conclusion $f(\theta_{t}\omega)=f(\omega)$ almost surely from the validity of the same distribution of $f(\theta_{t}\omega)$ and $f(\omega)$. It is not true in general. Could you tell me where I deduced wrong? Thanks!