General Observation. If we can decompose a given $n \times n$ matrix $\mathbf{A}$ into the form
$$ \mathbf{A} = \sum_{k=1}^{K} \mathbf{b}_k \mathbf{b}_k^{*} $$
where $\mathbf{b}_1, \ldots, \mathbf{b}_K \in \mathbb{C}^n$, then we know that $\mathbf{A}$ is psd because $\mathbf{v}^* \mathbf{A} \mathbf{v} = \sum_{k=1}^{K} \| \mathbf{b}_k \mathbf{v}\|^2 \geq 0 $. In general, if we can find a $\mathbb{C}^{n}$-valued measurable function $\mathbf{b}(x)$ on a measure space $(\mathcal{X}, \Sigma, \mu)$ so that
$$ \mathbf{A} = \int_{\mathcal{X}} \mathbf{b}(x) \mathbf{b}(x)^{*} \, \mu(\mathrm{d}x), $$
then $\mathbf{A}$ is psd with $\mathbf{v}^* \mathbf{A} \mathbf{v} = \int_{\mathcal{X}} \|\mathbf{b}(x) \mathbf{v}\|^2 \, \mu(\mathrm{d}x) \geq 0$.
OP's Case. Consider the vector-valued function
$$ \mathbf{b}(t) = (e^{-t}, e^{-2t}, \ldots, e^{-nt})^{\top} = \sum_{k=1}^{n} e^{-kt} \mathbf{e}_k, $$
where $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are the standard basis vectors of $\mathbb{C}^n$. If $\mathbf{A}$ denotes OP's matrix, then
\begin{align*}
\int_{0}^{\infty} \mathbf{b}(t) \mathbf{b}(t)^{*} \, \frac{\mathrm{d}t}{\sqrt{t}}
&= \sum_{j, k=1}^{n} \mathbf{e}_j \mathbf{e}_k^{*} \int_{0}^{\infty} e^{-(j+k)t} \, \frac{\mathrm{d}t}{\sqrt{t}} \\
&= \sum_{j, k=1}^{n} \mathbf{e}_j \mathbf{e}_k^{*} \sqrt{\frac{\pi}{j+k}} \\
&= \sqrt{\pi} \mathbf{A},
\end{align*}
proving that $\mathbf{A}$ is psd. Also, for any $\mathbf{v} \in \mathbb{C}^n$,
\begin{align*}
\mathbf{v}^* \mathbf{A} \mathbf{v}
&= \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \| \mathbf{b}(t) \mathbf{v}\|^2 \, \frac{\mathrm{d}t}{\sqrt{t}}.
\end{align*}
To show that $\mathbf{A}$ is actually pd, suppose $\mathbf{v}^* \mathbf{A} \mathbf{v} = 0$. Then $\mathbf{b}(t) \mathbf{v} = 0$ for Lebesgue almost every $t > 0$, and in particular, there are $n$ distinct points $t_1, \ldots, t_n$ in $(0, \infty)$ so that $\mathbf{b}(t_k) \mathbf{v} = 0$ for each $k = 1, \ldots, n$. By invoking Vandermonde determinant, we know that $\mathbf{b}(t_1), \ldots, \mathbf{b}(t_n)$ are linearly independent, we conclude $\mathbf{v} = 0$ and therefore $\mathbf{A}$ is pd.