Let $G$ be an abelian group. If $a$ and $b$ are two elements of order $8$ and $10$ respectively, then the order of the element $a^{-1}b$ is
choose the correct option
$a. 80$
$b. 18$
$c. 2$
$d. 40$
My attempt :I think option $a$ is correct
$|a^{-1}|=|a|=8$ .We know that $$\operatorname{lcm}(m,n)=\frac{mn}{\operatorname{gcd}(m,n)}$$
$\implies |a^{-1}b|=\operatorname{lcm}(|a^{-1}|,|b|)\operatorname{gcd}(|a^{-1}|,|b|)=\operatorname{lcm}(8,10)\operatorname{gcd}(8,10)=40.2=80$.
Edit:let $r=|a^{-1}b|\implies r|\operatorname{lcm(m,n)}\implies r=\operatorname{gcd}(m,n)\operatorname{lcm(m,n)}$